论文标题
子系统对称性富含拓扑顺序在三个维度
Subsystem symmetry enriched topological order in three dimensions
论文作者
论文摘要
我们介绍了一个由平面子系统对称性富含的三维(3D)拓扑顺序的模型。该模型是从3D复曲面代码开始的,其基态可以看作是二维(2D)膜覆盖物的同等重量叠加。然后,我们用2D簇状态装饰这些膜,该膜在线状子系统对称性下具有对称性保护拓扑顺序。这赋予了装饰的模型,具有平面子系统对称性,在该模型下,曲面代码的循环状激发分数化,从而导致每单位单位长度的兴奋性变性广泛。我们还表明,由于子系统对称性富集,拓扑纠缠熵的价值大于某些两部分的复曲面代码的价值。我们的模型可以通过测量一个短距离纠缠模型的全局对称性,该模型具有来自全球和子系统对称性相互作用的对称性保护拓扑顺序。我们研究了对称性在该模型边界上的非平地作用,从而发现了整体和子系统对称性之间的混合边界异常。为了进一步研究此相互作用,我们考虑测量总对称的几个不同的亚组。所得的模型网络包括具有分形式拓扑顺序的模型,它展示了更多可能发生在3D中的子系统对称性富集的类型。
We introduce a model of three-dimensional (3D) topological order enriched by planar subsystem symmetries. The model is constructed starting from the 3D toric code, whose ground state can be viewed as an equal-weight superposition of two-dimensional (2D) membrane coverings. We then decorate those membranes with 2D cluster states possessing symmetry-protected topological order under line-like subsystem symmetries. This endows the decorated model with planar subsystem symmetries under which the loop-like excitations of the toric code fractionalize, resulting in an extensive degeneracy per unit length of the excitation. We also show that the value of the topological entanglement entropy is larger than that of the toric code for certain bipartitions due to the subsystem symmetry enrichment. Our model can be obtained by gauging the global symmetry of a short-range entangled model which has symmetry-protected topological order coming from an interplay of global and subsystem symmetries. We study the non-trivial action of the symmetries on boundary of this model, uncovering a mixed boundary anomaly between global and subsystem symmetries. To further study this interplay, we consider gauging several different subgroups of the total symmetry. The resulting network of models, which includes models with fracton topological order, showcases more of the possible types of subsystem symmetry enrichment that can occur in 3D.