论文标题
追踪理论,Bokstedt周期性和bott becticities
Trace theories, Bokstedt periodicity and Bott periodicity
论文作者
论文摘要
我们充实了在Arxiv:1308.3743中概述的“跟踪理论”和“跟踪函数”的理论,将其扩展到同位词环境,并证明了重建定理,声称痕量理论完全由相关的跟踪函数确定。作为一个应用程序,我们考虑了代数$ a $ a $ a $ a $ a $ a $ a $的拓扑Hoshschild同源性$ thh(a,m),而在一个正面的正面特征上,其系数为bimodule $ m $,并证明了两个比较结果。首先,我们为Arxiv的Hochschild-Witt同源性提供了一个非常简单的代数模型:1604.01588(我们还使用定期版本$ WHP(a)$ WHH)确定了$ tp(a)$。其次,我们证明了$ thh(a)$被确定为共轭过滤的零期限,该期限是关于arXiv的共隔离环循环同源性$ \ of arxiv:1509.08784的$ \ overline {hp}(a)$,以及同构和同性恋派生的bokstedt周期性生成剂to the Botterator。我们还提供了Bokstedt周期性的独立证明,这比通常的周期性短一些。
We flesh out the theory of "trace theories" and "trace functors" sketched in arXiv:1308.3743, extend it to a homotopical setting, and prove a reconstruction theorem claiming that a trace theory is completely determined by the associated trace functor. As an application, we consider Topological Hoshschild Homology $THH(A,M)$ of a algebra $A$ over a perfect field of positive characteristic, with coefficients in a bimodule $M$, and prove two comparison results. Firstly, we give a very simple algebraic model for THH in terms of Hochschild-Witt Homology WHH of arXiv:1604.01588 (and we also identify $TP(A)$ with the periodic version $WHP(A)$ of WHH). Secondly, we prove that $THH(A)$ is identified with the zero term of the conjugate filtration on the co-periodic cyclic homology $\overline{HP}(A)$ of arXiv:1509.08784, and the isomorphism sends the Bokstedt periodicity generator to the Bott periodicity generator. We also give an independent proof of Bokstedt periodicity that is somewhat shorter than the usual ones.