论文标题

追踪理论,Bokstedt周期性和bott becticities

Trace theories, Bokstedt periodicity and Bott periodicity

论文作者

Kaledin, D.

论文摘要

我们充实了在Arxiv:1308.3743中概述的“跟踪理论”和“跟踪函数”的理论,将其扩展到同位词环境,并证明了重建定理,声称痕量理论完全由相关的跟踪函数确定。作为一个应用程序,我们考虑了代数$ a $ a $ a $ a $ a $ a $ a $的拓扑Hoshschild同源性$ thh(a,m),而在一个正面的正面特征上,其系数为bimodule $ m $,并证明了两个比较结果。首先,我们为Arxiv的Hochschild-Witt同源性提供了一个非常简单的代数模型:1604.01588(我们还使用定期版本$ WHP(a)$ WHH)确定了$ tp(a)$。其次,我们证明了$ thh(a)$被确定为共轭过滤的零期限,该期限是关于arXiv的共隔离环循环同源性$ \ of arxiv:1509.08784的$ \ overline {hp}(a)$,以及同构和同性恋派生的bokstedt周期性生成剂to the Botterator。我们还提供了Bokstedt周期性的独立证明,这比通常的周期性短一些。

We flesh out the theory of "trace theories" and "trace functors" sketched in arXiv:1308.3743, extend it to a homotopical setting, and prove a reconstruction theorem claiming that a trace theory is completely determined by the associated trace functor. As an application, we consider Topological Hoshschild Homology $THH(A,M)$ of a algebra $A$ over a perfect field of positive characteristic, with coefficients in a bimodule $M$, and prove two comparison results. Firstly, we give a very simple algebraic model for THH in terms of Hochschild-Witt Homology WHH of arXiv:1604.01588 (and we also identify $TP(A)$ with the periodic version $WHP(A)$ of WHH). Secondly, we prove that $THH(A)$ is identified with the zero term of the conjugate filtration on the co-periodic cyclic homology $\overline{HP}(A)$ of arXiv:1509.08784, and the isomorphism sends the Bokstedt periodicity generator to the Bott periodicity generator. We also give an independent proof of Bokstedt periodicity that is somewhat shorter than the usual ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源