论文标题

对冲您的赌注:通过混合VM购买选项来优化长期云成本

Hedge Your Bets: Optimizing Long-term Cloud Costs by Mixing VM Purchasing Options

论文作者

Ambati, Pradeep, Bashir, Noman, Irwin, David, Hajiesmaili, Mohammad, Shenoy, Prashant

论文摘要

云平台在许多采购选项下提供相同的VM,这些选项指定了不同的成本和时间承诺,例如按需,保留,持续使用,预定的储备,瞬态和现货块。通常,承诺越强,即更长且灵活性越少,价格就越低。但是,如果将来的工作负载无法利用他们承诺购买的VM,则更长且灵活的时间承诺可以增加用户的云成本。大型云客户经常发现选择正确的购买选项组合以降低其长期成本,同时保留为响应工作负载变化调整容量的能力,这是一项挑战。 为了解决该问题,我们设计政策来优化长期云成本,通过根据工作负载利用的短期和长期期望选择VM购买选项的组合。我们考虑从一个大型州立大学系统的大型共享集群中进行4年批量追踪,其中包括14K核心和6000万个职位提交,并评估如何使用我们的方法使用云服务器明智地执行这些工作。我们的结果表明,我们的政策在乐观的最佳离线方法的41%以内,而仅使用按需VM的成本少于50%。

Cloud platforms offer the same VMs under many purchasing options that specify different costs and time commitments, such as on-demand, reserved, sustained-use, scheduled reserve, transient, and spot block. In general, the stronger the commitment, i.e., longer and less flexible, the lower the price. However, longer and less flexible time commitments can increase cloud costs for users if future workloads cannot utilize the VMs they committed to buying. Large cloud customers often find it challenging to choose the right mix of purchasing options to reduce their long-term costs, while retaining the ability to adjust capacity up and down in response to workload variations. To address the problem, we design policies to optimize long-term cloud costs by selecting a mix of VM purchasing options based on short- and long-term expectations of workload utilization. We consider a batch trace spanning 4 years from a large shared cluster for a major state University system that includes 14k cores and 60 million job submissions, and evaluate how these jobs could be judiciously executed using cloud servers using our approach. Our results show that our policies incur a cost within 41% of an optimistic optimal offline approach, and 50% less than solely using on-demand VMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源