论文标题
频谱发现共同流畅的多模式数据
Spectral Discovery of Jointly Smooth Features for Multimodal Data
论文作者
论文摘要
在本文中,我们提出了一种光谱方法,用于得出在多个观察到的歧管上共同平滑的函数。这使我们能够通过异质传感器对相同现象进行测量,并拒绝传感器特定的噪声。我们的方法是无监督的,主要由两个步骤组成。首先,使用内核,我们在每个单独的歧管上获得一个子空间,该子空间跨越了平滑功能。然后,我们将光谱方法应用于所获得的子空间,并发现在所有歧管上共同光滑的函数。我们可以分析地表明,我们的方法可以保证提供一组正交功能,这些函数尽可能平滑,通过将Dirichlet Energy从最平稳到最低流畅的情况增加来订购。此外,我们表明可以使用NyStröm方法将提取的功能有效地扩展到看不见的数据。我们在模拟和实际测量数据上演示了提出的方法,并将结果与精液规范相关分析(CCA)的非线性变体进行了比较。特别是,我们在睡眠阶段识别方面显示出卓越的结果。此外,我们还展示了如何利用所提出的方法来查找非线性动态系统参数空间的最小实现。
In this paper, we propose a spectral method for deriving functions that are jointly smooth on multiple observed manifolds. This allows us to register measurements of the same phenomenon by heterogeneous sensors, and to reject sensor-specific noise. Our method is unsupervised and primarily consists of two steps. First, using kernels, we obtain a subspace spanning smooth functions on each separate manifold. Then, we apply a spectral method to the obtained subspaces and discover functions that are jointly smooth on all manifolds. We show analytically that our method is guaranteed to provide a set of orthogonal functions that are as jointly smooth as possible, ordered by increasing Dirichlet energy from the smoothest to the least smooth. In addition, we show that the extracted functions can be efficiently extended to unseen data using the Nyström method. We demonstrate the proposed method on both simulated and real measured data and compare the results to nonlinear variants of the seminal Canonical Correlation Analysis (CCA). Particularly, we show superior results for sleep stage identification. In addition, we show how the proposed method can be leveraged for finding minimal realizations of parameter spaces of nonlinear dynamical systems.