论文标题
COVID-19的动态因果模型
Dynamic causal modelling of COVID-19
论文作者
论文摘要
该技术报告描述了冠状病毒通过人群传播的动态因果模型。该模型基于产生结果的合奏或种群动态,例如随着时间的流逝,新病例和死亡。该模型的目的是量化参与相关结果预测的不确定性。通过假设适当的条件依赖性,可以对干预措施(例如,社会疏远)的影响和人群之间(例如群豁免)的差异进行建模,以预测在不同情况下可能发生的情况。从技术上讲,该模型利用最新的变量(贝叶斯)模型反转和比较程序,最初开发的是为了表征神经元合奏对扰动的响应。在这里,该建模应用于流行病学人群,以说明支持的推论类型以及如何优化给定时间表数据的模型本身。尽管本文的目的是描述建模方案,但结果说明了当前大流行的一些有趣的观点。例如,牛群免疫的非线性影响与自组织缓解过程有关。
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.