论文标题

密集的加权挖掘中的近乎最佳的减少SSSP

Near-Optimal Decremental SSSP in Dense Weighted Digraphs

论文作者

Bernstein, Aaron, Gutenberg, Maximilian Probst, Wulff-Nilsen, Christian

论文摘要

在减少单源最短路径问题(SSSP)中,我们得到了一个加权的有向图$ g =(v,e,w)$进行边缘删除和源源顶点$ r \ in V $;令$ n = | v |,m = | e | $和$ w $是图形的长宽比。目标是获得一个数据结构,该数据结构将最短的路径从$ r $到$ v $中的所有顶点,并可以在$ o(1)$ time中回答远程查询,并返回$ o(| p |)$时间的相应路径$ p $。 首先考虑了这个问题和Shiloach [JACM'81],后者为未加权的无向图提供了总更新时间$ O(MN)$的算法;后来将其扩展到定向加权图[focs'95,stoc'99]。有条件的下限表明$ O(Mn)$实际上是最佳的[ESA'04,focs'14,Stoc'15,Stoc'20]。在突破性的结果中,Forster等人。表明如果允许算法返回$(1+ε)$ - 近似路径,而不是确切的路径[stoc'14,iCalp'15],则可以实现总更新时间$ Mn^{0.9+O(1)} \ log W $。直到Probst Gutenberg和Wulff-Nilsen [Soda'20]提供了一种新方法,该方法得出了总时间$ \ tilde {o}(\ min {m^{2/3} n^{4/3} n^{4/3} \ log w,(mn)^,(mn)^{7/8} \ log w})$。 我们的结果基于这种最近的方法,但通过引入更强大的抽象以及不同的核心子例程来克服其局限性。我们的新框架产生了一个减少$(1+ε)$ - 近似SSSP数据结构,总更新时间$ \ tilde {o}(n^2 \ log^4 w)$。因此,对于具有多项式边缘的密集图,我们的算法几乎是最佳的。我们的框架也可以应用于稀疏图,以获取总更新时间$ \ tilde {o}(Mn^{2/3} \ log^3 W)$。 我们的主要技术使我们能够将DAG的SSSP算法转换为通用图的SSSP算法,我们认为这具有影响未来工作的巨大潜力。

In the decremental Single-Source Shortest Path problem (SSSP), we are given a weighted directed graph $G=(V,E,w)$ undergoing edge deletions and a source vertex $r \in V$; let $n = |V|, m = |E|$ and $W$ be the aspect ratio of the graph. The goal is to obtain a data structure that maintains shortest paths from $r$ to all vertices in $V$ and can answer distance queries in $O(1)$ time, as well as return the corresponding path $P$ in $O(|P|)$ time. This problem was first considered by Even and Shiloach [JACM'81], who provided an algorithm with total update time $O(mn)$ for unweighted undirected graphs; this was later extended to directed weighted graphs [FOCS'95, STOC'99]. There are conditional lower bounds showing that $O(mn)$ is in fact near-optimal [ESA'04, FOCS'14, STOC'15, STOC'20]. In a breakthrough result, Forster et al. showed that it is possible to achieve total update time $mn^{0.9+o(1)}\log W$ if the algorithm is allowed to return $(1+ε)$-approximate paths, instead of exact ones [STOC'14, ICALP'15]. No further progress was made until Probst Gutenberg and Wulff-Nilsen [SODA'20] provided a new approach for the problem, which yields total time $\tilde{O}(\min{m^{2/3}n^{4/3}\log W, (mn)^{7/8} \log W})$. Our result builds on this recent approach, but overcomes its limitations by introducing a significantly more powerful abstraction, as well as a different core subroutine. Our new framework yields a decremental $(1+ε)$-approximate SSSP data structure with total update time $\tilde{O}(n^2 \log^4 W)$. Our algorithm is thus near-optimal for dense graphs with polynomial edge-weights. Our framework can also be applied to sparse graphs to obtain total update time $\tilde{O}(mn^{2/3} \log^3 W)$. Our main technique allows us to convert SSSP algorithms for DAGs to ones for general graphs, which we believe has significant potential to influence future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源