论文标题

朝着基于众包的强大本地化:指纹精度指标增强了无线/磁/惯性整合方法

Towards Robust Crowdsourcing-Based Localization: A Fingerprinting Accuracy Indicator Enhanced Wireless/Magnetic/Inertial Integration Approach

论文作者

Li, You, He, Zhe, Gao, Zhouzheng, Zhuang, Yuan, Shi, Chuang, El-Sheimy, Naser

论文摘要

下一代物联网(IoT)系统对智能本地化的需求越来越大,可以随着人类的感知而扩展大数据。因此,没有准确度量的传统本地化解决方案将极大地限制大量应用。事实证明,基于众包的本地化对于大众市场的基于位置的物联网应用程序有效。本文提出了一种通过集成惯性,无线和磁性传感器来增强的基于众包的本地化方法。通过从三个级别(即信号,几何和数据库)引入指纹精度指标(FAI),可以实时预测无线和磁指纹精度。研究了这些FAI因素的优点和局限性及其在预测位置错误和离群值方面的表现。此外,提出了提出的FAI增强的扩展Kalman滤波器(EKF),改善了死亡 - 重组(DR)/WIFI,DR/磁性以及DR/WIFI/WIFI/WIFI/WIFI/磁性整合定位精度提高了30.2%,19.4%,19.4%和29.0%,并将最大位置错误降低了41.2%,28.4%,44。2%,44。2%,44。2%,44。2%,44。2%2.2%,44。2.2%2.2%2.2%,44。2%。这些结果证实了FAI增强EKF对使用众包数据提高多传感器集成本地化的准确性和可靠性的有效性。

The next-generation internet of things (IoT) systems have an increasingly demand on intelligent localization which can scale with big data without human perception. Thus, traditional localization solutions without accuracy metric will greatly limit vast applications. Crowdsourcing-based localization has been proven to be effective for mass-market location-based IoT applications. This paper proposes an enhanced crowdsourcing-based localization method by integrating inertial, wireless, and magnetic sensors. Both wireless and magnetic fingerprinting accuracy are predicted in real time through the introduction of fingerprinting accuracy indicators (FAI) from three levels (i.e., signal, geometry, and database). The advantages and limitations of these FAI factors and their performances on predicting location errors and outliers are investigated. Furthermore, the FAI-enhanced extended Kalman filter (EKF) is proposed, which improved the dead-reckoning (DR)/WiFi, DR/Magnetic, and DR/WiFi/Magnetic integrated localization accuracy by 30.2 %, 19.4 %, and 29.0 %, and reduced the maximum location errors by 41.2 %, 28.4 %, and 44.2 %, respectively. These outcomes confirm the effectiveness of the FAI-enhanced EKF on improving both accuracy and reliability of multi-sensor integrated localization using crowdsourced data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源