论文标题
用于超导设备的低温电孔互连
Cryogenic electro-optic interconnect for superconducting devices
论文作者
论文摘要
将信息编码到光场上是现代电信网络的骨干。与电缆相比,光纤可提供低损耗传输和巨大的带宽,目前还可以代替同轴电缆进行短距离通信。光纤还显示出显着降低的导热率,从而使光学互连可吸引与超导电路和设备的接口。然而,对于低温温度下的调节知之甚少。在这里,我们证明了原理证明实验,表明目前使用的Ti掺杂Linbo调节器将Pockels系数保持在3K ----经典微波放大器电路的基础温度。我们认识到超导机电电路的电流读数既执行相干光谱,又测量了光学机械诱导的透明度和不相互的温度计,并在光学信号中编码热力学侧带编码。尽管达到的噪声数字很高,但与较低的微波信号相匹配的方法,使用具有较高EO系数的集成设备或材料,应实现与当前HEMT放大器相似的添加噪声,从而为新兴的量子或经典计算平台提供并行读数的途径。
Encoding information onto optical fields is the backbone of modern telecommunication networks. Optical fibers offer low loss transport and vast bandwidth compared to electrical cables, and are currently also replacing coaxial cables for short-range communications. Optical fibers also exhibit significantly lower thermal conductivity, making optical interconnects attractive for interfacing with superconducting circuits and devices. Yet little is known about modulation at cryogenic temperatures. Here we demonstrate a proof-of-principle experiment, showing that currently employed Ti-doped LiNbO modulators maintain the Pockels coefficient at 3K---a base temperature for classical microwave amplifier circuitry. We realize electro-optical read-out of a superconducting electromechanical circuit to perform both coherent spectroscopy, measuring optomechanically-induced transparency, and incoherent thermometry, encoding the thermomechanical sidebands in an optical signal. Although the achieved noise figures are high, approaches that match the lower-bandwidth microwave signals, use integrated devices or materials with higher EO coefficient, should achieve added noise similar to current HEMT amplifiers, providing a route to parallel readout for emerging quantum or classical computing platforms.