论文标题
薄膜生长模型,表面扩散长度长
Thin film growth models with long surface diffusion lengths
论文作者
论文摘要
在薄膜沉积的有限迁移率(LM)模型中,每个原子或分子的最终位置是根据一组随机规则在另一个原子或分子发生之前根据一组随机规则选择的。在这里,我们调查了LM模型重现更现实的方法的特征的可能性,该方法代表了集体adatom扩散和外部通量的相互作用。在此处介绍的LM模型中,每个Adatom可能会执行$ g $ hops to nover of nove押金,但是从$ n $ n $横向邻居的网站上尝试了啤酒花尝试,概率$ p^n $,$ p <1 $。这些规则类似于在步骤边缘的Clarke-Vvedensky(CV)模型的规则,其主要参数是露台上的扩散与沉积比$ r $ $ r $和每个横向邻居的分离概率$ε$。在短时间内,LM模型的粗糙度可以根据$ g $和$ p $的缩放函数编写,增长指数与Villain-Lai-das Sarma普遍性类别一致。 LM模型以合适的参数选择以合理的精度复制表面粗糙度和CV模型的自相关功能的演变。这些型号的参数$ g $和$ r $的增加产生了更平滑的胶片表面,而$ p $和$ε$的增加使露台边界在短度长度上。但是,这两个模型的分离概率对表面粗糙度具有非常不同的影响:在LM模型中,对于固定的$ G $,随着$ p $的增加,表面粗糙度的增加;在简历模型中,对于固定的$ r $,表面随着$ε$的增加而平滑。该结果与LM模型的非马克维亚性质有关,因为Adatom的扩散率取决于其在膜表面的历史,并且在与露台步骤脱离后可能会严重降低。
In limited mobility (LM) models of thin film deposition, the final position of each atom or molecule is chosen according to a set of stochastic rules before the incidence of another atom or molecule. Here we investigate the possibility of a LM model to reproduce features of a more realistic approach that represents the interplay of collective adatom diffusion and the external flux. In the LM model introduced here, each adatom may execute $G$ hops to neighboring columns of the deposit, but a hop attempt from a site with $n$ lateral neighbors has probability $P^n$, with $P<1$. These rules resemble those of the Clarke-Vvedensky (CV) model without energy barriers at step edges, whose main parameters are the diffusion-to-deposition ratio $R$ on terraces and the detachment probability $ε$ per lateral neighbor. At short times, the roughness of the LM model can be written in terms of a scaling function of $G$ and $P$ and the growth exponent is consistent with the Villain-Lai-Das Sarma universality class. The evolution of the surface roughness and of the autocorrelation function of the CV model is reproduced with reasonable accuracy by the LM model with suitable choices of parameters. The increase of the parameters $G$ and $R$ of those models produces smoother film surfaces, while the increase of $P$ and $ε$ smoothen the terrace boundaries at short lengthscales. However, the detachment probabilities of the two models have very different effects on the surface roughness: in the LM model, for fixed $G$, the surface roughness increases as $P$ increases; in the CV model, the surface smoothens as $ε$ increases, for fixed $R$. This result is related to the non-Markovian nature of the LM model, since the diffusivity of an adatom depends on its history at the film surface and may be severely reduced after a detachment from a terrace step.