论文标题

国家标签的对抗性积极学习

State-Relabeling Adversarial Active Learning

论文作者

Zhang, Beichen, Li, Liang, Yang, Shijie, Wang, Shuhui, Zha, Zheng-Jun, Huang, Qingming

论文摘要

主动学习是通过对要标记为Oracle标记的最具代表性的样本来设计标签有效的算法。在本文中,我们提出了一种状态重新标记的对抗活动模型(SRAAL),该模型利用注释和标记/未标记的状态信息来得出最有用的无标记样本。 Sraal由代表生成器和国家歧视者组成。发电机将互补的注释信息与传统的重建信息一起生成样品的统一表示,从而将语义嵌入到整个数据表示中。然后,我们在歧视器中设计一个在线不确定性指标,该指标结束了重要性不同的未标记样本。结果,我们可以根据歧视者的预测状态选择最有用的样本。我们还设计了一种算法来初始化标记的池,这使得随后的采样效率更高。在各种数据集上进行的实验表明,我们的模型表现优于先前的最先进的主动学习方法,而我们最初的采样算法可以实现更好的性能。

Active learning is to design label-efficient algorithms by sampling the most representative samples to be labeled by an oracle. In this paper, we propose a state relabeling adversarial active learning model (SRAAL), that leverages both the annotation and the labeled/unlabeled state information for deriving the most informative unlabeled samples. The SRAAL consists of a representation generator and a state discriminator. The generator uses the complementary annotation information with traditional reconstruction information to generate the unified representation of samples, which embeds the semantic into the whole data representation. Then, we design an online uncertainty indicator in the discriminator, which endues unlabeled samples with different importance. As a result, we can select the most informative samples based on the discriminator's predicted state. We also design an algorithm to initialize the labeled pool, which makes subsequent sampling more efficient. The experiments conducted on various datasets show that our model outperforms the previous state-of-art active learning methods and our initially sampling algorithm achieves better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源