论文标题
非线性光学中产生的准标量头电场方程的基态解决方案
Ground state solutions for quasilinear scalar field equations arising in nonlinear optics
论文作者
论文摘要
在本文中,我们研究了一类绝对椭圆形方程,这些方程出现在非线性光学元件中。通过使用山间定理以及增加空间维度的技术,我们证明存在一种非平凡的弱解决方案,用于一般非线性的Berestycki-Lions类型的非线性术语。在准线性期间的更强假设下,还建立了径向基态溶液和基态溶液的存在。
In this paper, we study a class of quasilinear elliptic equations which appears in nonlinear optics. By using the mountain pass theorem together with a technique of adding one dimension of space, we prove the existence of a non-trivial weak solution for general nonlinear terms of Berestycki-Lions' type. The existence of a radial ground state solution and a ground state solution is also established under stronger assumptions on the quasilinear term.