论文标题
最大程度的可逆立方三倍,不承认完整的线条束集合
A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles
论文作者
论文摘要
我们表明,存在一个由可逆多项式定义的立方三倍,当由最大对角线对称群体定制时,它具有一个派生的类别,该类别没有由线包组成的完整特殊集合。这为Lekili和Ueda的猜想提供了反例。
We show that there exists a cubic threefold defined by an invertible polynomial that, when quotiented by the maximal diagonal symmetry group, has a derived category which does not have a full exceptional collection consisting of line bundles. This provides a counterexample to a conjecture of Lekili and Ueda.