论文标题
处方边缘的最小l^p密度
Minimal L^p-Densities with Prescribed Marginals
论文作者
论文摘要
我们在n维单位超数据管上的p-the p-the边缘力矩上得出了l^p功能的急剧下限。这种界限是根据边际的约束非线性积分方程系统的独特解决方案。对于正方形的函数,在第二个边际矩方面,边界具有明确的表达。
We derive sharp lower bounds for L^p-functions on the n-dimensional unit hypercube in terms of their p-th marginal moments. Such bounds are the unique solutions of a system of constrained nonlinear integral equations depending on the marginals. For square-integrable functions, the bounds have an explicit expression in terms of the second marginals moments.