论文标题

$α$ - 一般几何连接

$α$-connections in generalized geometry

论文作者

Blaga, Adara M., Nannicini, Antonella

论文摘要

我们考虑一个由$α$ - 连接的家族,由一对通用的双准准统计连接$(\ hat {\ nabla},\ hat {\ nabla}^*)$上的一般切线bundle $(tm \ oplus t^*m t^*m,\ cechblus t^*m,\ he {此外,我们为$ \ hat \ nabla^*$提供了必要的条件,使其成为Equiaffine连接,我们证明,如果$ h $是对称的,并且$ \ nabla h = 0 $,则$(tm \ oplus t^*m,\ oplus t^*m,\ check {h} \ hat {\ nabla}^{( - α)})$是一种共轭ricci-对称歧管。同样,我们表征了广义几乎几乎复合物和通用金属结构W.R.T.由$α$ - 连接定义的支架。最后,我们研究了$α$ - 连接由伪 - riemannian歧管的双重公制定义的,$(m,g)$,具有非脱位$ g $ g $ -smmetric $(1,1)$ - 张量 - 张量 - 张量$ j $,因此$ d^\ nabla j = 0 $ \ nabla $ \ nabla $ g $ g $ g $ g。

We consider a family of $α$-connections defined by a pair of generalized dual quasi-statistical connections $(\hat{\nabla},\hat{\nabla}^*)$ on the generalized tangent bundle $(TM\oplus T^*M, \check{h})$ and determine their curvature, Ricci curvature and scalar curvature. Moreover, we provide the necessary and sufficient condition for $\hat \nabla^*$ to be an equiaffine connection and we prove that if $h$ is symmetric and $\nabla h=0$, then $(TM\oplus T^*M, \check{h}, \hat{\nabla}^{(α)}, \hat{\nabla}^{(-α)})$ is a conjugate Ricci-symmetric manifold. Also, we characterize the integrability of a generalized almost product, of a generalized almost complex and of a generalized metallic structure w.r.t. the bracket defined by the $α$-connection. Finally we study $α$-connections defined by the twin metric of a pseudo-Riemannian manifold, $(M,g)$, with a non-degenerate $g$-symmetric $(1,1)$-tensor field $J$ such that $d^\nabla J=0$, where $\nabla$ is the Levi-Civita connection of $g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源