论文标题

大型渐近属,用于交点数和主要差异的主要地层

Large Genus Asymptotics for Intersection Numbers and Principal Strata Volumes of Quadratic Differentials

论文作者

Aggarwal, Amol

论文摘要

在本文中,我们在稳定曲线的模量空间上分析了$ψ$ - 类(也称为相关因子)之间的相交数量的大属渐近学。我们的证明是通过对递归关系(Virasoro约束)的组合分析进行的,这些分析是独特地确定这些相关因子的,以及这些关系中系数与某个不对称简单随机步行的跳跃概率之间的比较。作为此结果的应用,我们为Masur-Deech体积和面积的Siegel-Deech常数提供了较大的属限制,与二次差速器模量空间中的主要地层相关。这些确认了2019年Decroix-Goujard-Zograf-Zorich的预测。

In this paper we analyze the large genus asymptotics for intersection numbers between $ψ$-classes, also called correlators, on the moduli space of stable curves. Our proofs proceed through a combinatorial analysis of the recursive relations (Virasoro constraints) that uniquely determine these correlators, together with a comparison between the coefficients in these relations with the jump probabilities of a certain asymmetric simple random walk. As an application of this result, we provide the large genus limits for Masur-Veech volumes and area Siegel-Veech constants associated with principal strata in the moduli space of quadratic differentials. These confirm predictions of Delecroix-Goujard-Zograf-Zorich from 2019.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源