论文标题
主要太阳耀斑中色球凝结的光谱特征
Spectral signatures of chromospheric condensation in a major solar flare
论文作者
论文摘要
我们研究了X级溶胶溶液2014-09-10T17的冲动阶段中色球线和连续发射的演变:45太阳耀斑。我们将这种耀斑的先前分析扩展到Fe I,Fe II,Mg II,C I和SI II的多个色球层线,并与IRIS观察到,并结合了辐射流动力学(RHD)建模。对于多个耀斑的内核,这些线都显示出快速发展的双组分结构:静止时的增强,发射成分,以及强度可比强度的宽阔,高度红移的成分。红移的组件从25-50 km s $^{ - 1} $迁移到$ \ sim $ 30秒内的其余波长。 使用费米硬X射线观察,我们使用它们来驱动使用Radyn代码的RHD模拟来驱动RHD模拟,从而得出了影响致密色球层的加速电子束的参数。如Kowalski等人。 2017a,我们的模拟表明,最有活力的电子渗透到深层染色器中,将其供暖到t $ \ sim $ 10,000 k,而大部分电子将其能量消散,驱动爆炸性的蒸发及其对应的浓缩 - 非常密集(N $ _e \ sim 2 \ sim 2 \ sim 2 \ sim times times times times thile times thile times thile tires thile thile thile thile thile thile layer thines $ telly layer thines $ c。 km厚度),加热至8--12,000 K,朝着50 km S $^{ - 1} $的固定色球圈朝固定的色球圈移动。 合成FE II 2814.45a剖面非常类似于观察数据,包括连续性增强,以及固定式和高度红移的成分,迅速朝着其余的波长移动。重要的是,绝对连续强度,组件强度的比率,外观相对时间和红移振幅对模型输入参数敏感,显示出巨大的诊断潜力。
We study the evolution of chromospheric line and continuum emission during the impulsive phase of the X-class SOL2014-09-10T17:45 solar flare. We extend previous analyses of this flare to multiple chromospheric lines of Fe I, Fe II, Mg II, C I, and Si II, observed with IRIS, combined with radiative-hydrodynamical (RHD) modeling. For multiple flaring kernels, the lines all show a rapidly evolving double-component structure: an enhanced, emission component at rest, and a broad, highly red-shifted component of comparable intensity. The red-shifted components migrate from 25-50 km s$^{-1}$ towards the rest wavelength within $\sim$30 seconds. Using Fermi hard X-ray observations, we derive the parameters of an accelerated electron beam impacting the dense chromosphere, using them to drive a RHD simulation with the RADYN code. As in Kowalski et al. 2017a, our simulations show that the most energetic electrons penetrate into the deep chromosphere, heating it to T$\sim$10,000 K, while the bulk of the electrons dissipate their energy higher, driving an explosive evaporation, and its counterpart condensation -- a very dense (n$_e \sim 2 \times 10^{14}$ cm$^{-3}$), thin layer (30--40 km thickness), heated to 8--12,000 K, moving towards the stationary chromosphere at up to 50 km s$^{-1}$. The synthetic Fe II 2814.45A profiles closely resemble the observational data, including a continuum enhancement, and both a stationary and a highly red-shifted component, rapidly moving towards the rest wavelength. Importantly, the absolute continuum intensity, ratio of component intensities, relative time of appearance, and red-shift amplitude, are sensitive to the model input parameters, showing great potential as diagnostics.