论文标题
量子化学应用的Jordan-Wigner小工具可将T计数降低超过6倍
A Jordan-Wigner gadget that reduces T count by more than 6x for quantum chemistry applications
论文作者
论文摘要
量子计算机有可能成为深远的变革技术,尤其是在量子化学的背景下。但是,运行当前有用的化学应用程序需要大量的逻辑操作。例如,对模拟分子femoco(生物氮固定的关键组成部分)所需操作数量的规范估计值大约需要$ 10^{15} $逻辑门。能够以1 MHz速率应用逻辑操作的量子计算机将需要30多年的时间才能完成此类计算。如果要拥有商业效用,则必须通过更好地理解和优化量子算法来减少这种过于良好的运行时。本文的目的是引入这种优化。我们在下面介绍的小工具可以通过Jordan-Wigner Transformation进行Trotterterized量子化学的运行时提高6倍,而无需更改所需数量的Qubits。
Quantum computers have the potential to be a profoundly transformative technology, particularly in the context of quantum chemistry. However, running a chemistry application that is demonstrably useful currently requires a prohibitive number of logical operations. For example, the canonical estimate of the number of operations required to simulate the molecule FeMoco, the key component in biological nitrogen fixation, requires around $10^{15}$ logical gates. A quantum computer that is capable of applying logical operations at 1 Mhz rates would require more than 30 years to complete such a calculation. It is imperative to reduce this prohibitive runtime, by better understanding and optimising quantum algorithms, if the technology is to have commercial utility. The purpose of this paper is to introduce such an optimisation. The gadget that we introduce below affords a 6x improvement in runtime for Trotterized quantum chemistry employing the Jordan-Wigner transformation, without altering the required number of qubits.