论文标题

亚北极环境的打滑运动运动模型的评估

Evaluation of Skid-Steering Kinematic Models for Subarctic Environments

论文作者

Baril, Dominic, Grondin, Vincent, Deschênes, Simon-Pierre, Laconte, Johann, Vaidis, Maxime, Kubelka, Vladimír, Gallant, André, Giguère, Philippe, Pomerleau, François

论文摘要

在亚北极和北极地区,优先大型和沉重的滑雪机器人的稳健性和在困难的地形上运行的能力是优先的。这些机器人的状态估计,运动控制和路径计划依赖于基于车轮速度的准确进程模型。但是,通常在相对轻巧的平台上测试了Skid-Steer移动机器人(SSMR)的最先进的进程模型。在本文中,我们关注这些模型在大而重(590千克)SSMR上时的性能。我们在雪和混凝土上收集了超过2公里的数据。我们比较了通常用于SSMR的理想差分驱动器,扩展的差分驱动器,基于曲面半径和完整的线性运动学模型。通过在雪和混凝土上搜索其最佳参数来微调每个模型。然后,我们讨论参数,模型调整和模型的最终准确性之间的关系。

In subarctic and arctic areas, large and heavy skid-steered robots are preferred for their robustness and ability to operate on difficult terrain. State estimation, motion control and path planning for these robots rely on accurate odometry models based on wheel velocities. However, the state-of-the-art odometry models for skid-steer mobile robots (SSMRs) have usually been tested on relatively lightweight platforms. In this paper, we focus on how these models perform when deployed on a large and heavy (590 kg) SSMR. We collected more than 2 km of data on both snow and concrete. We compare the ideal differential-drive, extended differential-drive, radius-of-curvature-based, and full linear kinematic models commonly deployed for SSMRs. Each of the models is fine-tuned by searching their optimal parameters on both snow and concrete. We then discuss the relationship between the parameters, the model tuning, and the final accuracy of the models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源