论文标题
移动平台上卷积神经网络的能源预测模型
Energy Predictive Models for Convolutional Neural Networks on Mobile Platforms
论文作者
论文摘要
当在移动和嵌入式平台上部署深度学习模型时,能源使用是一个关键问题。当前的研究基于应用程序级特征开发能量预测模型,以为研究人员提供一种估计其深度学习模型能源消耗的方法。此信息对于构建可以有效利用硬件资源的资源感知模型很有用。但是,先前关于预测建模的工作几乎没有深入了解最终预测模型准确性和模型复杂性中功能选择的权衡。为了解决这个问题,我们基于从协同框架中收集的经验测量结果,对基于构建回归进行深入学习的基于建筑回归的预测模型进行了全面分析。我们的预测建模策略基于文献中使用的两种类型的预测模型:单个层和图层类型。我们对预测模型的分析表明,与使用先前方法采用的更复杂的特征相比,与预测模型相比,卷积层预测的模型复杂性的卷积层预测的4至32倍降低了4至32倍。为了获得推理阶段的总体能量估计,我们使用Jetson TX1上的12个代表性卷积神经网络(Convnets)和Snapdragon 820在Snapdragon 820上使用诸如Open Backend,Open Blabas,eigen和Cudnn之类的Snapdragon 820上的12个代表性卷积神经网络(CORVNET)构建了层型预测模型。我们获得了76%至85%的精度,模型复杂度为1,以跨不同硬件软件组合的测试转换器的总体能量预测。
Energy use is a key concern when deploying deep learning models on mobile and embedded platforms. Current studies develop energy predictive models based on application-level features to provide researchers a way to estimate the energy consumption of their deep learning models. This information is useful for building resource-aware models that can make efficient use of the hard-ware resources. However, previous works on predictive modelling provide little insight into the trade-offs involved in the choice of features on the final predictive model accuracy and model complexity. To address this issue, we provide a comprehensive analysis of building regression-based predictive models for deep learning on mobile devices, based on empirical measurements gathered from the SyNERGY framework.Our predictive modelling strategy is based on two types of predictive models used in the literature:individual layers and layer-type. Our analysis of predictive models show that simple layer-type features achieve a model complexity of 4 to 32 times less for convolutional layer predictions for a similar accuracy compared to predictive models using more complex features adopted by previous approaches. To obtain an overall energy estimate of the inference phase, we build layer-type predictive models for the fully-connected and pooling layers using 12 representative Convolutional NeuralNetworks (ConvNets) on the Jetson TX1 and the Snapdragon 820using software backends such as OpenBLAS, Eigen and CuDNN. We obtain an accuracy between 76% to 85% and a model complexity of 1 for the overall energy prediction of the test ConvNets across different hardware-software combinations.