论文标题

在块中进行完全异步的原始偶发凸优化

Towards Totally Asynchronous Primal-Dual Convex Optimization in Blocks

论文作者

Hendrickson, Katherine, Hale, Matthew

论文摘要

我们提出了一种平行的原始二算法,用于解决受约束的凸优化问题。该算法是“基于块”的,因为原始变量和双变量的向量被分配为块,每个块仅由单个处理器更新。我们考虑了异步的四种可能形式:在更新原始变量,对双变量的更新,原始变量的通信以及双重变量的通信。我们明确地构建了一个反例系列,以排除允许双重变量的异步通信,尽管允许其他形式的异步变量,而无需延迟时界限。制定了一阶更新法,并证明对异步方面具有鲁棒性。然后,我们将收敛速率得出,以执行操作的执行方式到Lagrangian鞍点,而无需指定必须执行的任何时间或模式。这些收敛速率包含同步算法作为特殊情况,并用于量化“异步惩罚”。数值结果说明了这些发展。

We present a parallelized primal-dual algorithm for solving constrained convex optimization problems. The algorithm is "block-based," in that vectors of primal and dual variables are partitioned into blocks, each of which is updated only by a single processor. We consider four possible forms of asynchrony: in updates to primal variables, updates to dual variables, communications of primal variables, and communications of dual variables. We explicitly construct a family of counterexamples to rule out permitting asynchronous communication of dual variables, though the other forms of asynchrony are permitted, all without requiring bounds on delays. A first-order update law is developed and shown to be robust to asynchrony. We then derive convergence rates to a Lagrangian saddle point in terms of the operations agents execute, without specifying any timing or pattern with which they must be executed. These convergence rates contain a synchronous algorithm as a special case and are used to quantify an "asynchrony penalty." Numerical results illustrate these developments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源