论文标题
平面波导中三阶特殊点附近的非绝热模态动力学
Nonadiabatic Modal Dynamics Around a Third-order Exceptional Point in a planar waveguide
论文作者
论文摘要
最近,在特殊点(EP)和相应的不对称状态转移现象周围的动力学参数包围已引起了相当大的关注。在这种情况下,除了在两级系统中围绕二阶EP(EP2)周围报道的时间 - 对称状态动力学之外,在多状态系统中对三阶EP(EP3)的相似状态动力学进行了研究,缺乏具有相当复杂的拓扑结构的丰富物理学。在这里,我们报告了具有自定义的增益曲线的制造可行的几种模式光学波导,并在存在多个EP2的情况下研究了EP3周围动态参数包围的效果。立方根分支点行为是根据绝热包围过程后的耦合模式的传播常数在耦合模式的传播常数之间建立的。现在,在考虑动态包围过程的同时,EP3周围系统绝热性的崩溃导致了独特的光动力学,我们显示了设备手性的崩溃。
Dynamical parametric encirclement around an Exceptional Point (EP) and corresponding asymmetric state transfer phenomenon have attracted considerable attention recently. In this context, beyond the reported time-asymmetric state dynamics around a second-order EP (EP2) in a two-level system, the investigation of similar state dynamics around a third-order EP (EP3) in a multi-state system, having comparably complex topology with rich physics, is lacking. Here, we report a fabrication-feasible few-mode planar optical waveguide with a customized gain-loss profile and investigate the effect of dynamical parametric encirclement around an EP3 in the presence of multiple EP2s. The cube-root branch point behavior is established in terms of successive switching between the propagation constants of the coupled modes following an adiabatic encirclement process. Now, while considering the dynamical encirclement process, the breakdown in system adiabaticity around an EP3 leads to a unique light dynamics, where we have shown the breakdown of chirality of the device.