论文标题
通过拓扑编织启用的多模式推断,在未信号交叉口处的隐式多构协调
Implicit Multiagent Coordination at Unsignalized Intersections via Multimodal Inference Enabled by Topological Braids
论文作者
论文摘要
我们专注于在未信号的街道交叉口的理性,非通信代理之间的导航。在这种情况下进行无碰撞运动之后,要求代理人之间有细微的隐式协调。这些域的结构通常会限制多重轨迹属于有限的模式集。我们的关键见解是,通过这些模式的模型赋予代理能力可以实现有效的协调,这是通过在代理行动中编码的意图信号隐式实现的。在本文中,我们使用拓扑编织的形式主义以紧凑和可解释的方式表示共同行为的模式。我们设计了一种分散的计划算法,该算法生成旨在减少新兴多种行为模式的不确定性的动作。这种机制使代理可以单独运行我们的算法,可以集体拒绝不安全的交叉点。我们在模拟案例研究中验证了我们的方法,该案例研究以四向未信号的交叉路口具有挑战性的多构想场景。我们的模型显示,在一组基线的基线上,对轨迹明确推理的碰撞频率降低了65%,同时保持了可比的时间效率。
We focus on navigation among rational, non-communicating agents at unsignalized street intersections. Following collision-free motion under such settings demands nuanced implicit coordination among agents. Often, the structure of these domains constrains multiagent trajectories to belong to a finite set of modes. Our key insight is that empowering agents with a model of these modes can enable effective coordination, realized implicitly via intent signals encoded in agents' actions. In this paper, we represent modes of joint behavior in a compact and interpretable fashion using the formalism of topological braids. We design a decentralized planning algorithm that generates actions aimed at reducing the uncertainty over the mode of the emerging multiagent behavior. This mechanism enables agents that individually run our algorithm to collectively reject unsafe intersection crossings. We validate our approach in a simulated case study featuring challenging multiagent scenarios at a four-way unsignalized intersection. Our model is shown to reduce frequency of collisions by >65% over a set of baselines explicitly reasoning over trajectories, while maintaining comparable time efficiency.