论文标题

列内聚合物网络中拉伸和弯曲的混合物

A blend of stretching and bending in nematic polymer networks

论文作者

Ozenda, O., Sonnet, A. M., Virga, E. G.

论文摘要

列分聚合物网络是(热和光)可活化材料,结合了橡胶和列液晶的特征。当只需最小化列列型聚合物网络的拉伸能量时,确定其所采用(热或光学)致动的形状的固有(Guassian)曲率。不幸的是,这会产生多种可能的形状,为此我们需要一个选择标准,只能通过校正弯曲能量根据变形形状的外部曲率提供。到目前为止,文献根据平均曲率提供了近似校正。在本文中,我们从三个空间维度的nematic弹性体的著名新古典能量中得出了一部聚合物列网络的适当弯曲能。该任务是通过基于修改的Kirchhoff-love假设来缩小维度执行的,该假设承受对更复杂的分析工具的批评。结果是表面弹性的自由能密度,将拉伸和弯曲混合在一起。它们可能会分隔时间或不长,应将其最小化。变形形状的外在曲率不仅通过平均曲率在弯曲能中的特征,而且还通过在主曲率方向的框架中的列主管的相对取向。

Nematic polymeric networks are (heat and light) activable materials, which combine the features of rubber and nematic liquid crystals. When only the stretching energy of a thin sheet of nematic polymeric network is minimized, the intrinsic (Guassian) curvature of the shape it takes upon (thermal or optical) actuation is determined. This, unfortunately, produces a multitude of possible shapes, for which we need a selection criterion, which may only be provided by a correcting bending energy depending on the extrinsic curvatures of the deformed shape. The literature has so far offered approximate corrections depending on the mean curvature. In this paper, we derive the appropriate bending energy of a sheet of polymeric nematic network from the celebrated neo-classical energy of nematic elastomers in three space dimensions. This task is performed via a dimension reduction based on a modified Kirchhoff-Love hypothesis, which withstands to the criticism of more sophisticated analytical tools. The result is a surface elastic free-energy density where stretching and bending are blended together; they may or may not be length-separated, and should be minimized together. The extrinsic curvatures of the deformed shape not only feature in the bending energy through the mean curvature, but also through the relative orientation of the nematic director in the frame of the directions of principal curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源