论文标题
多任务学习通过适应类似的任务来预测各种稀有疾病的死亡率
Multi-task Learning via Adaptation to Similar Tasks for Mortality Prediction of Diverse Rare Diseases
论文作者
论文摘要
使用电子健康记录(EHR)数据对各种稀有疾病的死亡率预测是智能医疗保健的至关重要任务。但是,数据不足和罕见疾病的临床多样性使直接培训有关个体疾病数据或来自不同疾病的所有数据的深度学习模型变得困难。这些患有不同疾病的患者的死亡率预测可以看作是数据不足和任务编号不足的多任务学习问题。但是,使用培训数据的任务也很难在多任务学习模型中训练特定于任务的模块。为了解决数据不足和任务多样性的挑战,我们提出了一种初始化共享的多任务学习方法(ADA-SIT),该方法学习了快速适应对动态测量相似任务的参数初始化。我们使用ADA-SIT来训练基于纵向EHR数据的基于长期短期存储网络(LSTM)的预测模型。实验结果表明,所提出的模型对多种罕见疾病的死亡率预测有效。
Mortality prediction of diverse rare diseases using electronic health record (EHR) data is a crucial task for intelligent healthcare. However, data insufficiency and the clinical diversity of rare diseases make it hard for directly training deep learning models on individual disease data or all the data from different diseases. Mortality prediction for these patients with different diseases can be viewed as a multi-task learning problem with insufficient data and large task number. But the tasks with little training data also make it hard to train task-specific modules in multi-task learning models. To address the challenges of data insufficiency and task diversity, we propose an initialization-sharing multi-task learning method (Ada-Sit) which learns the parameter initialization for fast adaptation to dynamically measured similar tasks. We use Ada-Sit to train long short-term memory networks (LSTM) based prediction models on longitudinal EHR data. And experimental results demonstrate that the proposed model is effective for mortality prediction of diverse rare diseases.