论文标题

Deepsentipers:对拟议的增强波斯情绪训练的新颖的深度学习模型

DeepSentiPers: Novel Deep Learning Models Trained Over Proposed Augmented Persian Sentiment Corpus

论文作者

Sharami, Javad PourMostafa Roshan, Sarabestani, Parsa Abbasi, Mirroshandel, Seyed Abolghasem

论文摘要

本文着重于如何在每个波斯语句子级文本上提取意见。深度学习模型为提高产出质量提供了一种新的方式。但是,这些体系结构需要以大注释数据以及准确的设计为食。据我们所知,我们不仅会遭受缺乏通知的波斯情绪的困扰,而且还是一个新颖的模型,可以根据多重和二进制分类对波斯的观点进行分类。因此,在这项工作中,首先,我们提出了两个新颖的深度学习体系结构,包括双向LSTM和CNN。它们是精确设计的深层层次结构的一部分,也能够在两种情况下对句子进行分类。其次,我们建议使用低资源波斯语语料库的三种数据增强技术。我们对三个基线和两种不同神经单词嵌入方法的全面实验表明,我们的数据增强方法和预期的模型成功地解决了研究的目的。

This paper focuses on how to extract opinions over each Persian sentence-level text. Deep learning models provided a new way to boost the quality of the output. However, these architectures need to feed on big annotated data as well as an accurate design. To best of our knowledge, we do not merely suffer from lack of well-annotated Persian sentiment corpus, but also a novel model to classify the Persian opinions in terms of both multiple and binary classification. So in this work, first we propose two novel deep learning architectures comprises of bidirectional LSTM and CNN. They are a part of a deep hierarchy designed precisely and also able to classify sentences in both cases. Second, we suggested three data augmentation techniques for the low-resources Persian sentiment corpus. Our comprehensive experiments on three baselines and two different neural word embedding methods show that our data augmentation methods and intended models successfully address the aims of the research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源