论文标题
在最大Cohen-MaCaulay模块上的正常奇异性的爆炸时
On the blow-up of a normal singularity at maximal Cohen-Macaulay modules
论文作者
论文摘要
雷诺(Raynaud)和格鲁森(Gruson)开发了一种理论,即沿着连贯的捆绑$ m $用代代数品种$ x $ x $,因为存在$ x $的爆炸$ x'$ x'$ x'$ x'$ x $,因此,$ m $的“严格转换”是$ x'$的“严格转换”,并且可以满足blight up的通用(最小值)财产。但是,对爆炸的奇异性知之甚少。在本文中,我们证明,如果$ x $是正常的表面奇异性,而$ m $是一种反射$ \ Mathcal {o} _ {x} $ - 模块,那么这种爆炸就自然而然地源于McKay对应的理论。我们表明,通过$ x $的分辨率获得了与$ m $相关的完整的捆绑$ \ nathcal {m} $(即,$ m $的背式反射性船体)获得全球范围的全球套头,然后是$ nikers clients $ nikers $ nikers $ nikers $ nikers $ nights $。此外,我们证明,如果$ x $是戈伦斯坦(Gorenstein),而$ m $在Wunram和Riemenschneider的意义上是特殊的(Bobadilla和作者先前的作品中概括),那么Raynaud和Gruson的爆炸是正常的。最后,我们使用Eisenbud开发的基质分解理论来提供此类爆炸的具体例子。
Raynaud and Gruson developed the theory of blowing-up an algebraic variety $X$ along a coherent sheaf $M$ in the sense that there exists a blow-up $X'$ of $X$ such that the "strict transform" of $M$ is flat over $X'$ and the blow-up satisfies an universal (minimality) property. However, not much is known about the singularities of the blow-up. In this article, we prove that if $X$ is a normal surface singularity and $M$ is a reflexive $\mathcal{O}_{X}$-module, then such a blow-up arises naturally from the theory of McKay correspondence. We show that the normalization of the blow-up of Raynaud and Gruson is obtained by a resolution of $X$ such that the full sheaf $\mathcal{M}$ associated to $M$ (i.e., the reflexive hull of the pull-back of $M$) is globally generated and then contracting all the components of the exceptional divisor not intersecting the first Chern class of $\mathcal{M}$. Moreover, we prove that if $X$ is Gorenstein and $M$ is special in the sense of Wunram and Riemenschneider (generalized in a previous work by Bobadilla and the author), then the blow-up of Raynaud and Gruson is normal. Finally, we use the theory of matrix factorization developed by Eisenbud, to give concrete examples of such blow-ups.