论文标题
关于两个$ 2 $ designs的家族的注释来自铃木山脉的卵形
A note on two families of $2$-designs arose from Suzuki-Tits ovoid
论文作者
论文摘要
在本说明中,我们提供了一个$ 2 $ - 设计的家族之一的精确构造,这是由于研究国旗传输$ 2 $ - 戴斯的$(v,k,λ)$,其复制数量$ r $ coprime coprime coprime to $λ$。我们表明,对于给定的正整数$ q = 2^{2n+1} \ geq 8 $,存在一个$ 2 $ -DESIGN,带有参数$(q^{2}+1,q,q-1)$和复制号$ q^{2} $ nuct suzuki $ \ textSsf {q aut as as as aut at(q)我们还用参数构建了一个由$ 2 $ -DESIGNS组成的家庭,$(q^{2}+1,q(q-1),(q-1)(q^{2} -q-1))$和复制号$ q^{2}(q-1)$ contingsukuki组$ suzuki组$ \\ textsf {sz(q)
In this note, we give a precise construction of one of the families of $2$-designs arose from studying flag-transitive $2$-designs with parameters $(v,k,λ)$ whose replication numbers $r$ are coprime to $λ$. We show that for a given positive integer $q=2^{2n+1}\geq 8$, there exists a $2$-design with parameters $(q^{2}+1,q,q-1)$ and the replication number $q^{2}$ admitting the Suzuki group $\textsf{Sz(q)}$ as its automorphism group. We also construct a family of $2$-designs with parameters $(q^{2}+1,q(q-1),(q-1)(q^{2}-q-1))$ and the replication number $q^{2}(q-1)$ admitting the Suzuki groups $\textsf{Sz(q)}$ as their automorphism groups.