论文标题
在规范空间中的各种规范性概念
Various notions of norm-attainability in normed spaces
论文作者
论文摘要
令$ h $为反身,密集,可分离,无限的尺寸复杂的希尔伯特(Hilbert Space),让$ b(h)$为$ h $上的所有有界线性操作员的代数。在本文中,我们在规范空间中进行了规范可靠的操作员的特征。我们为Banach空间,$ H $和基本操作员的非功率运算符在Banach空间中的线性功能的规范性可及时提供条件。最后,我们描述了在规范空间中为电源运算符的规范性稳定性的新概念。
Let $H$ be a reflexive, dense, separable, infinite dimensional complex Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on $H$. In this paper, we carry out characterizations of norm-attainable operators in normed spaces. We give conditions for norm-attainability of linear functionals in Banach spaces, non-power operators on $H$ and elementary operators. Lastly, we characterize a new notion of norm-attainability for power operators in normed spaces.