论文标题
有限变形的统一$ j_2 $ von-mises可塑性和定量脱位力学
A unification of finite deformation $J_2$ Von-Mises plasticity and quantitative dislocation mechanics
论文作者
论文摘要
我们提出了一个框架,该框架统一了经典现象学$ J_2 $和具有定量脱位力学的晶体可塑性理论。该理论允许计算任意错位分布的应力场,并与统计位错的塑性应变速率的最小修饰的经典($ j_2 $和晶体可塑性)模型相结合,导致有限变形的中尺度形象的多功能模型。我们通过在中尺度可塑性中解决两个出色的挑战问题来证明框架的某些功能:1)在约束的薄金属膜的约束简单剪切中,从所有应变梯度可塑性模型高估和无法预测的薄金属实验中恢复了应力 - 应变性能的实验范围缩放。 2)预测一系列位移分布的有限变形应力和能量密度电场,代表有限体中逐渐致密的位错壁,当宏观化时在多角化过程中可能出现,其中一种结果是证明了基于$ \nathrmγ$ - conconverine contragicalialsion的数学结果的不适当性。在这种情况下,我们的计算暴露了可能的“相变” - 类似于进一步研究的行为。我们还为有限变形理论中错位引起的体积变化引起的体积变化的基本问题提供了定量解决方案,并显示了在经典有限有限弹性弹性中作为一个问题的有限菌株脱位机制模型中(逆)变形型物体固有的(逆)变形的(逆)变形图的巨大非唯一性。
We present a framework which unifies classical phenomenological $J_2$ and crystal plasticity theories with quantitative dislocation mechanics. The theory allows the computation of stress fields of arbitrary dislocation distributions and, coupled with minimally modified classical ($J_2$ and crystal plasticity) models for the plastic strain rate of statistical dislocations, results in a versatile model of finite deformation mesoscale plasticity. We demonstrate some capabilities of the framework by solving two outstanding challenge problems in mesoscale plasticity: 1) recover the experimentally observed power-law scaling of stress-strain behavior in constrained simple shear of thin metallic films inferred from micropillar experiments which all strain gradient plasticity models overestimate and fail to predict; 2) predict the finite deformation stress and energy density fields of a sequence of dislocation distributions representing a progressively dense dislocation wall in a finite body, as might arise in the process of polygonization when viewed macroscopically, with one consequence being the demonstration of the inapplicability of current mathematical results based on $\mathrmΓ$-convergence for this physically relevant situation. Our calculations in this case expose a possible `phase transition' - like behavior for further theoretical study. We also provide a quantitative solution to the fundamental question of the volume change induced by dislocations in a finite deformation theory, as well as show the massive non-uniqueness in the solution for the (inverse) deformation map of a body inherent in a model of finite strain dislocation mechanics, when approached as a problem in classical finite elasticity.