论文标题
优化量子步行的空间扩散
Optimizing the spatial spread of a quantum walk
论文作者
论文摘要
我们设计了一项协议,以1D构建一维量子步行,以1D的速度最大化整个过程中的空间扩散。我们只允许硬币操作员的物理参数之一变化,即角度$θ$,因此对于$θ= 0 $,我们具有$ \hatσ_z$,而对于$θ=π/4 $,我们获得了Hadamard Gate。最佳$θ$序列呈现非平凡的模式,大部分$θ\大约0 $与$θ\ youth your the Extles y your-of $θ\大约π/4 $值在越来越长的时间后。我们提供了纠缠特性,准能谱和生存概率的分析,提供了完整的物理图片。
We devise a protocol to build 1D time-dependent quantum walks in 1D maximizing the spatial spread throughout the procedure. We allow only one of the physical parameters of the coin-tossing operator to vary, i.e. the angle $θ$, such that for $θ=0$ we have the $\hatσ_z$, while for $θ=π/4$ we obtain the Hadamard gate. The optimal $θ$ sequences present non-trivial patterns, with mostly $θ\approx 0$ alternated with $θ\approx π/4$ values after increasingly long periods. We provide an analysis of the entanglement properties, quasi-energy spectrum and survival probability, providing a full physical picture.