论文标题
单体和双层$α$ - $ \ MATHCAL {t} _3 $ lattices的多体效应和光学特性
Many-Body Effects and Optical Properties of Single- and Double Layer $α$-$\mathcal{T}_3$ Lattices
论文作者
论文摘要
已经进行了广泛的分析和数值研究,以检查多体效应对各种$α$ - $ \ MATHCAL {t} _3 $材料在非谐振光学敷料场下所扮演的角色。此外,我们探索了其对跳跃参数$α$的依赖性以及电子光耦合强度$λ_0$。与没有入射光相比,由于狄拉克电子和入射光之间的相互相互作用而导致的连衣裙状态显示出相当不同的电子和光学特性。具体而言,讨论了这些电子装扮状态的各种集体运输和光学特性,并与单层和双层$α$ - $ \ MATHCAL {T} _3 $ lattices进行了比较。所有这些新型的特性都是由于中间扁平带的存在以及它之间的带间带和上部传导带的过渡。同样,计算了用于交互的双层$α$ - $ \ $ \ natcal {t} _3 $ lattices的耦合等离子体分散液,揭示了一个较低的原声等等离子体分支,可调节的组速度由每一层的层分离和FERMI能量确定。最后,在随机相近似中介绍了多体理论,用于计算掺杂的多层$α$ - $ \ MATHCAL {T} _3 $ lattices的光吸光度。我们预计此处报告的发现可能会影响下一代纳米光学和纳米质量设备的设计。
An extensive analytical and numerical investigation has been carried out to examine the role played by many-body effects on various $α$-$\mathcal{T}_3$ materials under an off-resonance optical dressing field. Additionally, we explore its dependence on the hopping parameter $α$ as well as the electron-light coupling strength $λ_0$. The obtained dressed states due to mutual interaction between Dirac electrons and incident light are shown to demonstrate rather different electronic and optical properties in comparison with those in the absence of incident light. Specifically, various collective transport and optical properties of these electron dressed states are discussed in detail and compared for both single- and double layer $α$-$\mathcal{T}_3$ lattices. All of these novel properties are due to the presence of a middle flat band and the interband transitions between it and an upper conduction band. Also, coupled plasmon dispersions for interacting double layer $α$-$\mathcal{T}_3$ lattices are calculated, revealing a lower acoustic-like plasmon branch with tunable group velocity determined by both the layer separation and Fermi energy of each layer. Finally, a many-body theory is presented within the random-phase approximation for calculating the optical absorbance of doped multi-layered $α$-$\mathcal{T}_3$ lattices in a linearly-polarized light field. We anticipate that the discoveries reported here could impact the design of the next-generation nano-optical and nano-plasmonic devices.