论文标题

通过近似消息传递和信息获得最大化的积极抽样进行成对比较

Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization

论文作者

Mikhailiuk, Aliaksei, Wilmot, Clifford, Perez-Ortiz, Maria, Yue, Dingcheng, Mantiuk, Rafal

论文摘要

成对比较数据在许多领域中都与主观评估实验一起出现,例如在图像和视频质量评估中。在这些实验中,要求观察者在两个条件之间表达偏好。但是,许多成对比较方案需要大量比较才能推断出准确的分数,当每次比较耗时(例如视频)或昂贵(例如医学成像)时,这可能是不可行的。这激发了仅选择最有用的对比较对的主动采样算法。在本文中,我们提出了ASAP,这是一种基于近似消息传递和预期信息获得最大化的主动采样算法。与大多数依赖于后验分布的部分更新的现有方法不同,我们能够执行完整的更新,因此很大程度上提高了推断分数的准确性。该算法依赖于三种技术来降低计算成本:基于近似消息传递,对信息增益的选择性评估以及在批处理中选择对的推理,该批量构成了信息增益倒数的最小跨越树。我们通过真实和合成数据证明,与现有方法相比,ASAP提供了推断得分的最高准确性。我们还为大规模实验提供了ASAP的开源GPU实施。

Pairwise comparison data arise in many domains with subjective assessment experiments, for example in image and video quality assessment. In these experiments observers are asked to express a preference between two conditions. However, many pairwise comparison protocols require a large number of comparisons to infer accurate scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that chooses only the most informative pairs for comparison. In this paper we propose ASAP, an active sampling algorithm based on approximate message passing and expected information gain maximization. Unlike most existing methods, which rely on partial updates of the posterior distribution, we are able to perform full updates and therefore much improve the accuracy of the inferred scores. The algorithm relies on three techniques for reducing computational cost: inference based on approximate message passing, selective evaluations of the information gain, and selecting pairs in a batch that forms a minimum spanning tree of the inverse of information gain. We demonstrate, with real and synthetic data, that ASAP offers the highest accuracy of inferred scores compared to the existing methods. We also provide an open-source GPU implementation of ASAP for large-scale experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源