论文标题

Y-NET:生物医学图像分割和聚类

Y-net: Biomedical Image Segmentation and Clustering

论文作者

Pathan, Sharmin, Tripathi, Anant

论文摘要

我们提出了一个深层聚类体系结构,以及图像分割以及医学图像分析。主要思想是基于无监督的学习,以将受试者样本中疾病严重程度的图像聚集,然后将此图像细分以突出显示和概述感兴趣的区域。我们首先在图像上培训自动编码器以进行分割。来自自动编码器分支的编码器部分将群集节点和分割节点。使用Kmeans聚类进行深度聚类在聚类分支上进行,并使用轻质模型进行分割。每个分支都使用自动编码器提取的功能。我们证明了ISIC 2018皮肤病变分析对黑色素瘤检测和城市景观数据集进行分割和聚类的结果。所提出的体系结构在两个数据集上击败了UNET和DeepLab结果,并且参数数量不到一半。我们使用深聚类分支将图像聚类为四个簇。我们的方法可以应用于与医学成像的高复杂数据集一起使用,以分析严重疾病的生存预测或根据疾病传播的范围来定制治疗方法。聚类患者可以帮助了解如何在实际有价值的特征上完成binning,以降低特征稀疏性并提高分类任务的准确性。提出的结构可以提供早期诊断并减少对标签的干预,因为随着数据集的增长,它可能会变得非常昂贵。主要思想是提出一种用深层聚类进行分割的一种镜头方法。

We propose a deep clustering architecture alongside image segmentation for medical image analysis. The main idea is based on unsupervised learning to cluster images on severity of the disease in the subject's sample, and this image is then segmented to highlight and outline regions of interest. We start with training an autoencoder on the images for segmentation. The encoder part from the autoencoder branches out to a clustering node and segmentation node. Deep clustering using Kmeans clustering is performed at the clustering branch and a lightweight model is used for segmentation. Each of the branches use extracted features from the autoencoder. We demonstrate our results on ISIC 2018 Skin Lesion Analysis Towards Melanoma Detection and Cityscapes datasets for segmentation and clustering. The proposed architecture beats UNet and DeepLab results on the two datasets, and has less than half the number of parameters. We use the deep clustering branch for clustering images into four clusters. Our approach can be applied to work with high complexity datasets of medical imaging for analyzing survival prediction for severe diseases or customizing treatment based on how far the disease has propagated. Clustering patients can help understand how binning should be done on real valued features to reduce feature sparsity and improve accuracy on classification tasks. The proposed architecture can provide an early diagnosis and reduce human intervention on labeling as it can become quite costly as the datasets grow larger. The main idea is to propose a one shot approach to segmentation with deep clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源