论文标题

SPCNET:人姿势估计的空间保护和内容感知网络

SPCNet:Spatial Preserve and Content-aware Network for Human Pose Estimation

论文作者

Xiao, Yabo, Yu, Dongdong, Wang, Xiaojuan, Lv, Tianqi, Fan, Yiqi, Wu, Lingrui

论文摘要

人类的姿势估计是计算机视觉中的一项基本而又具有挑战性的任务。尽管深度学习技术在这一领域取得了长足的进步,但困难的场景(例如,隐形关键,遮挡,复杂的多人场景和异常姿势)仍然没有很好地处理。为了减轻这些问题,我们提出了一个新颖的空间保护和内容感知网络(SPCNET),其中包括两个有效的模块:扩张的沙漏模块(DHM)和选择性信息模块(SIM)。通过使用扩张的沙漏模块,我们可以保留空间分辨率以及大型接受场。与沙漏网络类似,我们堆叠DHM,以获取多阶段和多尺度信息。然后,在充分考虑空间内容感知机制的情况下,选择性信息模块旨在从不同级别中选择相对重要的特征,从而大大提高了性能。对MPII,LSP和FLIC人姿势估计基准的广泛实验证明了我们网络的有效性。特别是,我们超过了以前的方法,并在三个上述基准数据集上实现了最先进的性能。

Human pose estimation is a fundamental yet challenging task in computer vision. Although deep learning techniques have made great progress in this area, difficult scenarios (e.g., invisible keypoints, occlusions, complex multi-person scenarios, and abnormal poses) are still not well-handled. To alleviate these issues, we propose a novel Spatial Preserve and Content-aware Network(SPCNet), which includes two effective modules: Dilated Hourglass Module(DHM) and Selective Information Module(SIM). By using the Dilated Hourglass Module, we can preserve the spatial resolution along with large receptive field. Similar to Hourglass Network, we stack the DHMs to get the multi-stage and multi-scale information. Then, a Selective Information Module is designed to select relatively important features from different levels under a sufficient consideration of spatial content-aware mechanism and thus considerably improves the performance. Extensive experiments on MPII, LSP and FLIC human pose estimation benchmarks demonstrate the effectiveness of our network. In particular, we exceed previous methods and achieve the state-of-the-art performance on three aforementioned benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源