论文标题

纠缠群集用于地面量子多体状态

Entanglement Clustering for ground-stateable quantum many-body states

论文作者

Matty, Michael, Zhang, Yi, Senthil, T., Kim, Eun-Ah

论文摘要

尽管它们在决定系统的量子机械性能方面具有根本的重要性,但多体局部量子汉密尔顿人的基态在多体希尔伯特空间中构成了一组量度。因此,确定给定的多体量子状态是否可统计是一项具有挑战性的任务。在这里,我们提出了一种无监督的机器学习方法,称为纠缠聚类(“ entancl”),以将可稳态的波函数与必须使用纠缠结构信息激发的状态波函数的那些函数分开。 Entancl使用交换运算符集合的快照作为输入,并将此高维数据投射到二维,并使用统一的歧管近似和投影(UMAP)保留与独特的纠缠结构相关的数据的重要拓扑特征。然后,使用$ k = 2 $的K-均值聚类将投影数据聚类。通过将Entancl应用于两个示例,一个一维带绝缘子和二维复曲面代码,我们证明Entancl可以成功地将基础状态与具有较高计算效率的激发状态分开。 Entancl独立于哈密顿量和相关的能量估计,提供了一种新的范式,用于以计算上有效的方式解决量子多体波函数。

Despite their fundamental importance in dictating the quantum mechanical properties of a system, ground states of many-body local quantum Hamiltonians form a set of measure zero in the many-body Hilbert space. Hence determining whether a given many-body quantum state is ground-stateable is a challenging task. Here we propose an unsupervised machine learning approach, dubbed the Entanglement Clustering ("EntanCl"), to separate out ground-stateable wave functions from those that must be excited state wave functions using entanglement structure information. EntanCl uses snapshots of an ensemble of swap operators as input and projects this high dimensional data to two-dimensions, preserving important topological features of the data associated with distinct entanglement structure using the uniform manifold approximation and projection (UMAP). The projected data is then clustered using K-means clustering with $k=2$. By applying EntanCl to two examples, a one-dimensional band insulator and the two-dimensional toric code, we demonstrate that EntanCl can successfully separate ground states from excited states with high computational efficiency. Being independent of a Hamiltonian and associated energy estimates, EntanCl offers a new paradigm for addressing quantum many-body wave functions in a computationally efficient manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源