论文标题

通过平行的多接收场1D卷积在粗糙注释的体育视频中检测事件检测

Event detection in coarsely annotated sports videos via parallel multi receptive field 1D convolutions

论文作者

Vats, Kanav, Fani, Mehrnaz, Walters, Pascale, Clausi, David A., Zelek, John

论文摘要

在体育视频分析等问题中,由于视频和庞大的视频数据量,很难获得准确的框架级别注释和确切的事件持续时间。在冰曲棍球等快节奏的运动中,这个问题更为明显。粗略地获得注释可以更加实用和时间效率。我们建议在精心注释的视频中提出事件检测的任务。我们为提出的任务介绍了一个多尺寸的时间卷积网络体系结构。该网络在多个接收场的帮助下,在各种时间尺度上处理信息,以说明有关确切事件位置和持续时间的不确定性。我们通过适当的消融研究证明了多受感染现场结构的有效性。该方法对两个任务进行了评估 - 在NHL数据集中的粗曲棍球视频中进行的事件检测,并在Soccernet数据集中的足球中发现了事件。这两个数据集缺乏框架级注释,并且具有非常不同的事件频率。实验结果证明了网络的有效性,通过在NHL数据集中获得55%的F1得分,并与SOCCERNET数据集中的最新技术相比,通过实现竞争性能。我们认为,我们的方法将有助于在体育视频中开发更多实用的事件检测管道。

In problems such as sports video analytics, it is difficult to obtain accurate frame level annotations and exact event duration because of the lengthy videos and sheer volume of video data. This issue is even more pronounced in fast-paced sports such as ice hockey. Obtaining annotations on a coarse scale can be much more practical and time efficient. We propose the task of event detection in coarsely annotated videos. We introduce a multi-tower temporal convolutional network architecture for the proposed task. The network, with the help of multiple receptive fields, processes information at various temporal scales to account for the uncertainty with regard to the exact event location and duration. We demonstrate the effectiveness of the multi-receptive field architecture through appropriate ablation studies. The method is evaluated on two tasks - event detection in coarsely annotated hockey videos in the NHL dataset and event spotting in soccer on the SoccerNet dataset. The two datasets lack frame-level annotations and have very distinct event frequencies. Experimental results demonstrate the effectiveness of the network by obtaining a 55% average F1 score on the NHL dataset and by achieving competitive performance compared to the state of the art on the SoccerNet dataset. We believe our approach will help develop more practical pipelines for event detection in sports video.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源