论文标题

长期文档总结的分歧和纠纷方法

A Divide-and-Conquer Approach to the Summarization of Long Documents

论文作者

Gidiotis, Alexios, Tsoumakas, Grigorios

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a novel divide-and-conquer method for the neural summarization of long documents. Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into an ensemble of smaller summarization problems. In particular, we break a long document and its summary into multiple source-target pairs, which are used for training a model that learns to summarize each part of the document separately. These partial summaries are then combined in order to produce a final complete summary. With this approach we can decompose the problem of long document summarization into smaller and simpler problems, reducing computational complexity and creating more training examples, which at the same time contain less noise in the target summaries compared to the standard approach. We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance. Our best models achieve results that are on par with the state-of-the-art in two two publicly available datasets of academic articles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源