论文标题
使用多音量有限体积方法在立方体上的全局非液压动力学核心方法:配方和初步测试
A global nonhydrostatic dynamical core on cubed sphere using multi-moment finite volume method: formulation and preliminary test
论文作者
论文摘要
通过使用多功能有限体积方法来确保严格的数值保护,已经开发了一种非遗传动力学核心。为了表示没有极性问题的球形几何形状,采用了立方体网格。将四阶多功能公式化公式应用于通过GNOMONIC投影的每个斑块球体上局部曲线坐标的非静态控制方程。在垂直方向上,使用基于高度的地形网格代表地形。为了绕过垂直方向上的相对较小的网格间距施加的CFL稳定性限制,使用HEVI(水平显式和垂直隐式)策略的尺寸分类时间集成是通过应用Imex Runge-Kutta方案实现的。所提出的动力核心保留了球形几何学的四阶精度,并已通过广泛使用的基准测试验证。我们的数值实验的结果表明,作为大气模型的平台,当前的数值核心具有较高的解决方案质量和巨大的实践潜力。基于此动态核心的数值天气预测和全球大气循环模拟的新统一模型正在开发中。
A nonhydrostatic dynamical core has been developed by using the multi-moment finite volume method that ensures the rigorous numerical conservation. To represent the spherical geometry free of polar problems, the cubed-sphere grid is adopted. A fourth-order multi-moment discretization formulation is applied to the nonhydrostatic governing equations cast in local curvilinear coordinates on each patch of cubed sphere through a gnomonic projection. In vertical direction, the height-based terrain-following grid is used to represent the topography. To get around the CFL stability restriction imposed by relatively small grid spacing in the vertical direction, the dimensional-splitting time integration using the HEVI (Horizontal Explicit and Vertical Implicit) strategy is implemented by applying the IMEX Runge-Kutta scheme. The proposed dynamical core preserves the fourth-order accuracy in spherical geometry and has been verified by the widely-used benchmark tests. The results of our numerical experiments show that the present numerical core has superior solution quality and great practical potential as a platform for atmospheric models. A new unified model for numerical weather prediction and global atmospheric circulation simulation based on this dynamical core is under development.