论文标题

通过适应性提高RBF-FD的高度不均匀节点分布的效率

Enhancing RBF-FD Efficiency for Highly Non-Uniform Node Distributions via Adaptivity

论文作者

LI, Siqing, Ling, Leevan, Liu, Xin, Mishra, Pankaj K, Sen, Mrinal K, Zhang, Jing

论文摘要

径向基函数产生的有限差异(RBF-FD)方法由于其在不规则淋巴结分布方面的灵活性,最近已获得流行。但是,文献中的收敛理论应用于非均匀节点分布时,需要缩小填充距离,并且不利用高数据密度的区域。使用相同的模板大小和附录多项式程度的非自适应方法在高密度区域将具有更高的局部精度,但对整体收敛顺序没有影响,并且可能浪费了计算能力。这项工作提出了一种自适应RBF-FD方法,该方法利用局部数据密度实现了理想的订单准确性。通过基于数据密度进行多项式改进并使用自适应模板大小,自适应RBF-FD方法产生具有较高稀疏性的分化矩阵,同时达到了相同的用户指定的收敛顺序,以实现非均匀点分布。这使该方法可以更好地利用较高的节点密度的区域,与标准非自适应RBF-FD方法相比,保持准确性和效率。

Radial basis function generated finite-difference (RBF-FD) methods have recently gained popularity due to their flexibility with irregular node distributions. However, the convergence theories in the literature, when applied to nonuniform node distributions, require shrinking fill distance and do not take advantage of areas with high data density. Non-adaptive approach using same stencil size and degree of appended polynomial will have higher local accuracy at high density region, but has no effect on the overall order of convergence and could be a waste of computational power. This work proposes an adaptive RBF-FD method that utilizes the local data density to achieve a desirable order accuracy. By performing polynomial refinement and using adaptive stencil size based on data density, the adaptive RBF-FD method yields differentiation matrices with higher sparsity while achieving the same user-specified convergence order for nonuniform point distributions. This allows the method to better leverage regions with higher node density, maintaining both accuracy and efficiency compared to standard non-adaptive RBF-FD methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源