论文标题

A2D2:奥迪自动驾驶数据集

A2D2: Audi Autonomous Driving Dataset

论文作者

Geyer, Jakob, Kassahun, Yohannes, Mahmudi, Mentar, Ricou, Xavier, Durgesh, Rupesh, Chung, Andrew S., Hauswald, Lorenz, Pham, Viet Hoang, Mühlegg, Maximilian, Dorn, Sebastian, Fernandez, Tiffany, Jänicke, Martin, Mirashi, Sudesh, Savani, Chiragkumar, Sturm, Martin, Vorobiov, Oleksandr, Oelker, Martin, Garreis, Sebastian, Schuberth, Peter

论文摘要

高质量注释数据的可用性加速了机器学习,移动机器人技术和自动驾驶的研究。为此,我们发布了奥迪自动驾驶数据集(A2D2)。我们的数据集由同时记录的图像和3D点云以及3D边界框,语义分割,实例分割以及从汽车总线提取的数据组成。我们的传感器套件由六台摄像机和五个LIDAR单元组成,可提供完整的360度覆盖范围。记录的数据是时间同步和相互注册的。注释适用于非序列框架:具有语义分割图像和点云标签的41,277帧,其中12,497帧在前置摄像头视野内的对象也有3D边界框注释。此外,我们为德国南部三个城市的录音提供了392,556个未注释的传感器数据的顺序帧。这些序列包含多个循环。由于GDPR立法并保留匿名性,面部和车辆板被模糊。 A2D2可根据CC BY-ND 4.0许可提供,允许遵守许可条款的商业使用。数据和更多信息可在http://www.a2d2.audi上获得。

Research in machine learning, mobile robotics, and autonomous driving is accelerated by the availability of high quality annotated data. To this end, we release the Audi Autonomous Driving Dataset (A2D2). Our dataset consists of simultaneously recorded images and 3D point clouds, together with 3D bounding boxes, semantic segmentation, instance segmentation, and data extracted from the automotive bus. Our sensor suite consists of six cameras and five LiDAR units, providing full 360 degree coverage. The recorded data is time synchronized and mutually registered. Annotations are for non-sequential frames: 41,277 frames with semantic segmentation image and point cloud labels, of which 12,497 frames also have 3D bounding box annotations for objects within the field of view of the front camera. In addition, we provide 392,556 sequential frames of unannotated sensor data for recordings in three cities in the south of Germany. These sequences contain several loops. Faces and vehicle number plates are blurred due to GDPR legislation and to preserve anonymity. A2D2 is made available under the CC BY-ND 4.0 license, permitting commercial use subject to the terms of the license. Data and further information are available at http://www.a2d2.audi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源