论文标题
相互作用的水稻 - 米勒模型:批量和边界
The interacting Rice-Mele model: bulk and boundaries
论文作者
论文摘要
我们研究了相互作用的一维水稻模型,这是一种拓扑特性的典型的费米模型。要设置阶段,我们首先计算单粒子光谱函数,局部密度和在没有相互作用的情况下的边界电荷。边界电荷完全由指示散装对应关系的散装特性确定。在大型参数方面,它与从有效的低能理论中获得的参数(ARXIV:2004.00463)一致。其次,我们研究了结果对两粒子相互作用的鲁棒性。为了恢复小差距的一系列领先对数,这些差距消除了互动中的普通扰动理论,我们使用了基本的分析重新归一化组方法。它是用于小型相互作用的控制,可以直接应用于微观晶格模型。我们针对数值密度矩阵重新归一化组数据进行基准测试结果。整体中的主要相互作用效应是与相互作用依赖指数的差异重新归一化。边界电荷的重要特征是未改变的,可以从重新归一化的体积特性中理解,从而提高了与相互作用状态的散装对应关系。这不仅需要对低能差距重新归一化的处理,还需要高能带宽度的处理。与低能领域理论相反,我们的重新归一化组方法也提供了后者。我们表明,这种相互作用破坏了整体特性与边缘状态数量之间的关系,这与观察到具有有限潜在调制的稻米模型不会揭示任何零能量边缘状态。
We investigate the interacting, one-dimensional Rice-Mele model, a prototypical fermionic model of topological properties. To set the stage, we firstly compute the single-particle spectral function, the local density, and the boundary charge in the absence of interactions. The boundary charge is fully determined by bulk properties indicating a bulk-boundary correspondence. In a large parameter regime it agrees with the one obtained from an effective low-energy theory (arXiv:2004.00463). Secondly, we investigate the robustness of our results towards two-particle interactions. To resum the series of leading logarithms for small gaps, which dismantle plain perturbation theory in the interaction, we use an essentially analytical renormalization group approach. It is controlled for small interactions and can directly be applied to the microscopic lattice model. We benchmark the results against numerical density matrix renormalization group data. The main interaction effect in the bulk is a power-law renormalization of the gap with an interaction dependent exponent. The important characteristics of the boundary charge are unaltered and can be understood from the renormalized bulk properties, elevating the bulk-boundary correspondence to the interacting regime. This requires a consistent treatment not only of the low-energy gap renormalization but also of the high-energy band width one. In contrast to low-energy field theories our renormalization group approach also provides the latter. We show that the interaction spoils the relation between the bulk properties and the number of edge states, consistent with the observation that the Rice-Mele model with finite potential modulation does not reveal any zero-energy edge states.