论文标题

在稳定图上使用多个避免的穿越的复杂缩放光谱

Complex scaling spectrum using multiple avoided crossings at stabilization graph

论文作者

Kapralova-Zdanska, Petra Ruth

论文摘要

这项研究涉及有限基础设置$ \ {χ_k\} $基于实际缩放的共振计算,$χ_k(x)\toχ_k(xe^{ - η})$。我证明共振宽度通常受到几个邻近的准污染连续体状态的影响。基于这一发现,我提出了一种新方法,以计算复杂的共振能以及几个复杂旋转的连续体状态。该理论是针对一维模型引入的,然后将其用于双重激发共振$ 2S^2 $。新方法需要对足够较大的参数$η$间隔的真实频谱(“稳定图”),而所寻求共振的潜在曲线逐渐符合几个不同的准孔子状态。理解共鸣的绝热哈密顿量和参与避免穿越的几个准官方状态。由于$η$被带到复杂的平面,$η\ toIθ$,因此获得了复杂尺度光谱的相应部分。

This study concerns finite basis set $\{χ_k\}$ calculations of resonances based on real scaling, $χ_k(x)\to χ_k(xe^{-η})$. I demonstrate that resonance width is generally influenced by several neighboring quasi-discrete continuum states. Based on this finding I propose a new method to calculate the complex resonance energy together with several states of complex rotated continuum. The theory is introduced for a one-dimensional model, then it is applied for helium doubly excited resonance $2s^2$. The new method requires the real spectrum ("stabilization graph") for a sufficiently large interval of the parameter $η$ on which the potential curve of the sought resonance gradually meets several different quasi-continuum states. Diabatic Hamiltonian which comprehends the resonance and the several quasi-continuum states participating at the avoided crossings is constructed. As $η$ is taken to complex plane, $η\to iθ$, the corresponding part of the complex scaled spectrum is obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源