论文标题

与关系的量子查询复杂性

The quantum query complexity of composition with a relation

论文作者

Belovs, Aleksandrs, Lee, Troy

论文摘要

负重对手方法,$ \ mathrm {adv}^\ pm(g)$,已知来表征任何布尔函数$ g $的有限误差量子查询复杂性,并且也要服从完美的组成定理$ \ mathrm $ \ mathrm {adv}}^\ pm(f \ circ g^n) \ Mathrm {adv}^\ pm(g)$。 Belovs给出了负重对手方法的修改版本,$ \ mathrm {adv} _ {rel}^\ pm(f)$,其特征是关系$ f \ subseteq \ subseteq \ subseteq \ subseteq \ subseteq \ subseteq \ {0,1 \}^n \ times [k times [k times [k] $的界限 - error量子查询复杂性,如果$ \ mathrm {adv}^\ pm(f_a)= o(\ mathrm {adv} _ {rel}^\ pm(f))$在[k] $ in [k] $中,$ f_a $是boolean函数定义为$ f_a(yif $ f_a(if),则有效证明是有效的。在此注释中,我们显示了一个完美的组成定理,用于与布尔函数$ g $ \ [\ mathrm {adv} _ {rel}^\ pm(f \ circ g^n)= \ mathrm {adv} _ {adv} _ {res} _ {rel}^{rel}^\ pm(f) \]对于有效的可验证关系$ f $这意味着$ q(f \ circ g^n)=θ(\ mathrm {adv} _ {rel}^\ pm(f)\ mathrm {adv}^\ pm(g))$。

The negative weight adversary method, $\mathrm{ADV}^\pm(g)$, is known to characterize the bounded-error quantum query complexity of any Boolean function $g$, and also obeys a perfect composition theorem $\mathrm{ADV}^\pm(f \circ g^n) = \mathrm{ADV}^\pm(f) \mathrm{ADV}^\pm(g)$. Belovs gave a modified version of the negative weight adversary method, $\mathrm{ADV}_{rel}^\pm(f)$, that characterizes the bounded-error quantum query complexity of a relation $f \subseteq \{0,1\}^n \times [K]$, provided the relation is efficiently verifiable. A relation is efficiently verifiable if $\mathrm{ADV}^\pm(f_a) = o(\mathrm{ADV}_{rel}^\pm(f))$ for every $a \in [K]$, where $f_a$ is the Boolean function defined as $f_a(x) = 1$ if and only if $(x,a) \in f$. In this note we show a perfect composition theorem for the composition of a relation $f$ with a Boolean function $g$ \[ \mathrm{ADV}_{rel}^\pm(f \circ g^n) = \mathrm{ADV}_{rel}^\pm(f) \mathrm{ADV}^\pm(g) \enspace . \] For an efficiently verifiable relation $f$ this means $Q(f \circ g^n) = Θ( \mathrm{ADV}_{rel}^\pm(f) \mathrm{ADV}^\pm(g) )$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源