论文标题
广义的一个阶段Stefan问题是消失的粘度极限
A generalized one phase Stefan problem as a vanishing viscosity limit
论文作者
论文摘要
我们研究了描述化学反应界面或竞争物种的空间隔离界面的非线性扩散方程的消失粘度极限,其中溶液的负部分的扩散速率会收敛到零。与标准的一期Stefan问题一样,我们证明溶液的正部分均匀地收敛于广义的一相Stefan问题。然后,使用此信息来确定负零件的限制方程,这是一个普通的微分方程。
We study the vanishing viscosity limit of a nonlinear diffusion equation describing chemical reaction interface or the spatial segregation interface of competing species, where the diffusion rate for the negative part of the solution converges to zero. As in the standard one phase Stefan problem, we prove that the positive part of the solution converges uniformly to the solution of a generalized one phase Stefan problem. This information is then employed to determine the limiting equation for the negative part, which is an ordinary differential equation.