论文标题

无监督域适应的多源源

Multi-source Attention for Unsupervised Domain Adaptation

论文作者

Cui, Xia, Bollegala, Danushka

论文摘要

域的适应性考虑了使用从特定源域到其他目标域的数据概括模型的问题。通常,很难找到合适的单一来源可以适应,并且必须考虑多个来源。使用不相关的源可以导致次优性能,称为\ emph {负转移}。但是,选择适当的源以在多源无监督域适应性(UDA)中对给定目标实例进行分类是一项挑战。我们将源选择为注意力学习问题,在该问题中,我们学到了针对给定目标实例的源的注意力。为此,我们首先使用伪标记的目标域实例独立学习特定于源的分类模型以及源和目标域之间的相关性图。接下来,我们了解有关汇总特定于源模型预测的来源的注意力重量。跨域情感分类基准的实验结果表明,该提出的方法在多源UDA中优于先前的建议。

Domain adaptation considers the problem of generalising a model learnt using data from a particular source domain to a different target domain. Often it is difficult to find a suitable single source to adapt from, and one must consider multiple sources. Using an unrelated source can result in sub-optimal performance, known as the \emph{negative transfer}. However, it is challenging to select the appropriate source(s) for classifying a given target instance in multi-source unsupervised domain adaptation (UDA). We model source-selection as an attention-learning problem, where we learn attention over sources for a given target instance. For this purpose, we first independently learn source-specific classification models, and a relatedness map between sources and target domains using pseudo-labelled target domain instances. Next, we learn attention-weights over the sources for aggregating the predictions of the source-specific models. Experimental results on cross-domain sentiment classification benchmarks show that the proposed method outperforms prior proposals in multi-source UDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源