论文标题
分数量子数,复杂的轨道和非交通性几何形状
Fractional Quantum Numbers, Complex Orbifolds and Noncommutative Geometry
论文作者
论文摘要
本文研究了强大磁场中涵盖2D Orbifolds空间的通用同源性的电导率,从而消除了文献早期作品中磁场上对磁场的完整性约束。我们认为$ Z $上的天然Landau Hamiltonian,并表明其低洼频谱由有限数量的隔离点组成。当磁场$ b $较大时,我们计算相关的全态光谱轨道的von Neumann度,并获得分数量子数作为电导。
This paper studies the conductance on the universal homology covering space $Z$ of 2D orbifolds in a strong magnetic field, thereby removing the integrality constraint on the magnetic field in earlier works in the literature. We consider a natural Landau Hamiltonian on $Z$ and show that its low-lying spectrum consists of a finite number of isolated points. We calculate the von Neumann degree of the associated holomorphic spectral orbibundles when the magnetic field $B$ is large, and obtain fractional quantum numbers as the conductance.