论文标题

8个布尔原子,跨越256维纠缠验证性的三序代数

8 Boolean Atoms Spanning the 256-Dimensional Entanglement-Probability Three-Set Algebra of the Two-Qutrit Hiesmayr-Loffler Magic Simplex of Bell States

论文作者

Slater, Paul B.

论文摘要

We obtain formulas (bot. p. 12)--including $\frac{2}{121}$ and $\frac{4 \left(242 \sqrt{3} π-1311\right)}{9801}$--for the eight atoms (Fig. 11), summing to 1, which span a 256-dimensional three-set (P, S, PPT)两Qutrit Hiesmayr-loffler国家的纠缠概率布尔代数。 PPT表示阳性的部分转置,而P和S提供了必要的液化和足够的纠缠条件。 The constraints ensuring entanglement are $s> \frac{16}{9} \approx 1.7777$ and $p> \frac{2^{27}}{3^{18} \cdot 7^{15} \cdot13} \approx 5.61324 \cdot 10^{-15}$.在这里,$ s $是$ 8 \ times 8 $相关矩阵的八个单数值的总和(ky fan norm)的平方,而$ p $是单数值的产品的平方。在两个Quarkh hiesmayr-loffler案例中,一个约束是$ s> \ frac {9} {4} {4} \约2.25 $,而$ \ \\ frac {3^{24}} {2^{134}} {134}} \ yourter under in po $ 1.2968528306 \ cdot $ po $ po $ po $ po $ po $ po $ po $ an纠缠概率$ \约0.607698 $。在这两种情况下,$ s $的约束都相当于众所周知的CCNR/重组标准。此外,我们使用A. mandilara-伪二拷贝不可证实的(POCU)负面偏移的两Qutrit态分布在可分离状态的表面上的软件。此外,我们在此两Qutrit设置中研究了最佳可分离近似问题,并将可分离状态的明确分解为11个产品状态之和。首先,使用quasirandom程序估算了许多兴趣(包括八种原子)。

We obtain formulas (bot. p. 12)--including $\frac{2}{121}$ and $\frac{4 \left(242 \sqrt{3} π-1311\right)}{9801}$--for the eight atoms (Fig. 11), summing to 1, which span a 256-dimensional three-set (P, S, PPT) entanglement-probability boolean algebra for the two-qutrit Hiesmayr-Loffler states. PPT denotes positive partial transpose, while P and S provide the Li-Qiao necessary and}sufficient conditions for entanglement. The constraints ensuring entanglement are $s> \frac{16}{9} \approx 1.7777$ and $p> \frac{2^{27}}{3^{18} \cdot 7^{15} \cdot13} \approx 5.61324 \cdot 10^{-15}$. Here, $s$ is the square of the sum (Ky Fan norm) of the eight singular values of the $8 \times 8$ correlation matrix in the Bloch representation, and $p$, the square of the product of the singular values. In the two-ququart Hiesmayr-Loffler case, one constraint is $s>\frac{9}{4} \approx 2.25$, while $\frac{3^{24}}{2^{134}} \approx 1.2968528306 \cdot 10^{-29}$ is an upper bound on the appropriate $p$ value, with an entanglement probability $\approx 0.607698$. The $S$ constraints, in both cases, prove equivalent to the well-known CCNR/realignment criteria. Further, we detect and verify--using software of A. Mandilara--pseudo-one-copy undistillable (POCU) negative partial transposed two-qutrit states distributed over the surface of the separable states. Additionally, we study the best separable approximation problem within this two-qutrit setting, and obtain explicit decompositions of separable states into the sum of eleven product states. Numerous quantities of interest--including the eight atoms--were, first, estimated using a quasirandom procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源