论文标题
Qiskit Pulse:通过脉冲编程量子计算机的编程量子计算机
Qiskit Pulse: Programming Quantum Computers Through the Cloud with Pulses
论文作者
论文摘要
量子电路模型是一个抽象,它隐藏了量子计算机上门的基本物理实现和测量。为了精确控制实际量子硬件,需要执行脉冲和读数级指令的能力。为此,我们引入了Qiskit Pulse,这是一种脉冲级的编程范式,该范围是在Qiskit-Terra \ cite {qiskit}中实现的。为了展示Qiskit脉冲的功能,我们在IBM量子系统上使用一对Quarbits在IBM量子系统上校准纠缠栅极的未回声和回声变体。我们对基于云的IBM量子系统上的互惠纠缠栅极的单个和两脉冲变体进行了哈密顿的表征。然后,我们将这些校准的序列转换为高保真的CNOT门,通过将局部旋转和局部置换量应用于Qubits,以分别为未回声和回声的平均门忠诚度$ f = 0.981 $和$ f = 0.979 $。这与$ f_ {cx} = 0.984 $的标准后端CNOT保真度相媲美。此外,为了说明用户如何在读取链的不同级别访问其结果,我们构建了一个自定义判别器来研究量子读数相关性。 Qiskit Pulse允许用户探索高级控制方案,例如最佳控制理论,动力学去耦和误差缓解,这些方案在电路模型中无法使用。
The quantum circuit model is an abstraction that hides the underlying physical implementation of gates and measurements on a quantum computer. For precise control of real quantum hardware, the ability to execute pulse and readout-level instructions is required. To that end, we introduce Qiskit Pulse, a pulse-level programming paradigm implemented as a module within Qiskit-Terra \cite{Qiskit}. To demonstrate the capabilities of Qiskit Pulse, we calibrate both un-echoed and echoed variants of the cross-resonance entangling gate with a pair of qubits on an IBM Quantum system accessible through the cloud. We perform Hamiltonian characterization of both single and two-pulse variants of the cross-resonance entangling gate with varying amplitudes on a cloud-based IBM Quantum system. We then transform these calibrated sequences into a high-fidelity CNOT gate by applying pre and post local-rotations to the qubits, achieving average gate fidelities of $F=0.981$ and $F=0.979$ for the un-echoed and echoed respectively. This is comparable to the standard backend CNOT fidelity of $F_{CX}=0.984$. Furthermore, to illustrate how users can access their results at different levels of the readout chain, we build a custom discriminator to investigate qubit readout correlations. Qiskit Pulse allows users to explore advanced control schemes such as optimal control theory, dynamical decoupling, and error mitigation that are not available within the circuit model.