论文标题

非线性双面介电元面的自我诱导的被动非转化传播

Self-induced passive nonreciprocal transmission by nonlinear bifacial dielectric metasurfaces

论文作者

Jin, Boyuan, Argyropoulos, Christos

论文摘要

洛伦兹互惠定律的破坏是一项非平凡的任务,因为它通常需要笨重的磁铁或复杂的时间调制动态技术。在这项工作中,我们提出了非线性双面介电元表面的简单而紧凑的设计,以实现强大的自我诱导的被动非偏置传播,而无需使用外部偏见。所提出的设计是自由空间光学应用程序的理想选择,可以在两个入射极化下运行,并且需要非常低的输入激发能力才能达到非偏置状态。它由两个被动硅的跨膜组成,它们表现出嵌入在超薄玻璃基板中的Fano和Lorentzian共振。由于硅的较大的Kerr非线性,在低兴奋强度下导致强烈的非肾脏可实现高度不对称场的增强。此外,提出了级联设计,以进一步改善插入损失,扩大非偏射强度范围,并通过增强传输对比度来增加隔离率。最后,证明所提出的非线性跨表面对制造缺陷是可靠的,并且即使在两个发射波同时从两个方向上构成两个入射波,也可以实现相对宽输入功率范围的大隔离。预计目前的工作将导致新的紧凑型非注射纳米光子设备,例如全光二极管,隔离器,循环器和超薄保护层,以用于敏感的光学组件。

The breaking of Lorentz reciprocity law is a non-trivial task, since it usually requires bulky magnets or complicated time-modulation dynamic techniques to be accomplished. In this work, we present a simple and compact design of a nonlinear bifacial dielectric metasurface to achieve strong self-induced passive nonreciprocal transmission without the use of external biases. The proposed design is ideal for free space optics applications, can operate under both incident polarizations, and require very low input excitation power to reach the nonreciprocal regime. It is composed of two passive silicon-based metasurfaces exhibiting Fano and Lorentzian resonances embedded in an ultrathin glass substrate. Highly asymmetric field enhancement is achieved with the proposed design that leads to strong nonreciprocity at low excitation intensities due to the large Kerr nonlinearity of silicon. Moreover, cascade designs are presented to further improve the insertion loss, broaden the nonreciprocal intensity range, and increase the isolation ratio by enhancing the transmission contrast. Finally, it is demonstrated that the proposed nonlinear metasurface is robust to fabrication imperfections and can achieve large isolation for a relative broad input power range even in the case of two incident waves impinging at the same time from both directions. The current work is expected to lead to new compact nonreciprocal nanophotonic devices, such as all-optical diodes, isolators, circulators, and ultrathin protective layers for sensitive optical components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源