论文标题
MXPOOL:用于分层图表示学习的多重池学习
MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning
论文作者
论文摘要
在过去的几年中,如何将深度学习方法用于图形分类任务吸引了大量的研究关注。关于图形分类任务,要分类的图形可能具有各种图形大小(即不同数量的节点和边缘),并且具有各种图形属性(例如,平均节点度,直径和群集系数)。图形的各种特性对现有图形学习技术构成了重大挑战,因为不同的图形具有不同的最佳拟合超参数。很难通过统一的图神经网络从一组不同的图形中学习图形特征。这激发了我们以多种方式使用多重结构,并利用图形的先验属性来指导学习。在本文中,我们提出了MXPool,该MXPool同时使用多个图形卷积/池网络来构建用于图表表示任务的层次学习结构。我们在众多图形分类基准上进行的实验表明,我们的MXPOOL比其他最先进的图形表示方法具有优越性。
How to utilize deep learning methods for graph classification tasks has attracted considerable research attention in the past few years. Regarding graph classification tasks, the graphs to be classified may have various graph sizes (i.e., different number of nodes and edges) and have various graph properties (e.g., average node degree, diameter, and clustering coefficient). The diverse property of graphs has imposed significant challenges on existing graph learning techniques since diverse graphs have different best-fit hyperparameters. It is difficult to learn graph features from a set of diverse graphs by a unified graph neural network. This motivates us to use a multiplex structure in a diverse way and utilize a priori properties of graphs to guide the learning. In this paper, we propose MxPool, which concurrently uses multiple graph convolution/pooling networks to build a hierarchical learning structure for graph representation learning tasks. Our experiments on numerous graph classification benchmarks show that our MxPool has superiority over other state-of-the-art graph representation learning methods.